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Fermi resonance in CO2: Mode assignment and quantum nuclear
effects from first principles molecular dynamics
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Vibrational spectroscopy is a fundamental tool to investigate local atomic arrangements and the
effect of the environment, provided that the spectral features can be correctly assigned. This can be
challenging in experiments and simulations when double peaks are present because they can have
different origins. Fermi dyads are a common class of such doublets, stemming from the resonance
of the fundamental excitation of a mode with the overtone of another. We present a new, efficient
approach to unambiguously characterize Fermi resonances in density functional theory (DFT) based
simulations of condensed phase systems. With it, the spectral features can be assigned and the two
resonating modes identified. We also show how data from DFT simulations employing classical
nuclear dynamics can be post-processed and combined with a perturbative quantum treatment at a
finite temperature to include analytically thermal quantum nuclear effects. The inclusion of these
effects is crucial to correct some of the qualitative failures of the Newtonian dynamics simulations
at a low temperature such as, in particular, the behavior of the frequency splitting of the Fermi dyad.
We show, by comparing with experimental data for the paradigmatic case of supercritical CO2, that
these thermal quantum effects can be substantial even at ambient conditions and that our scheme
provides an accurate and computationally convenient approach to account for them. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4979199]

I. INTRODUCTION

Fermi resonances were first identified by Fermi in 19311

to explain the unexpected multiple peaks observed by Rasetti
in the Raman spectrum of CO2.2,3 Since then, they have
been associated with double or multiple peak structures in
the vibrational signature of many systems, such as organic
molecules,4–8 carotenoid,9 water,10–13 or ammonia.14,15 Fur-
thermore, Fermi resonances are also important in the context
of energy transfer. In fact, they can dramatically influence
relaxation processes after photoexcitation and the resulting
chemical reactivity.16–18 This may originate, for example,
the ultrafast vibrational energy transfer observed for water
molecules at air interfaces.13

The unambiguous identification of Fermi resonances is,
however, very challenging because multi-peak structures in
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the spectroscopic signature of a given system may have
different origins. In particular, double (or multiple) peaks can
stem either from a resonance or from the different environ-
ments that the probed molecular vibration feels. An example
is the two peaks observed via spectroscopy studies of the struc-
ture and specific acidity of water/quartz interfaces for the O–H
stretching.19 This splitting might correspond to two “states” of
water,20,21 but the possibility of a Fermi resonance cannot be
discarded.22

Experimentally, the direct approach to discriminate if a
resonance is present is isotopic substitution. However, this
approach is often problematic because substituted compounds
may not be readily available, in particular for large molecules,
or because the relevant vibration, e.g., in liquid water, involves
labile protons that can easily undergo exchanges with other
available protons.

Given these experimental difficulties, full atomistic sim-
ulations should play a major role in the identification of
Fermi resonances. In particular, DFT-based simulations have
emerged in several cases as the computational tool of choice
to investigate effectively the structure of complex systems.23

In simulation, however, Fermi resonances have been mostly
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studied with other approaches. For example, by adopting
generalized coordinates, which lead to kinetic energy cou-
pling,24,25 by designing a coupled Hamiltonian that incorpo-
rates experimental information,26–29 or by using accurate but
very expensive quantum chemistry methods.30 Semi-classical
methods,31–34 combining an action-angle variable representa-
tion of the system with model Hamiltonians which explicitly
incorporated couplings and resonances, have also proved pow-
erful tools to interpret the spectra often with a state-to-state
resolution of the peaks. These approaches included specific
terms, e.g., non-harmonic contributions in the diagonal terms
in the Hamiltonian, to account for features such as anharmonic
shifts. In this family of methods, classical trajectories in curvi-
linear coordinates were also run on the model Hamiltonian to
interpret the spectra in terms of a qualitative analysis of the
orbits of the underlying dynamics.

In this work, we discuss instead to what extent fully
atomistic Newtonian dynamics on a DFT potential surface
can be used to characterize the Fermi dyad in supercritical
CO2. The advantage of such simulations, done in Cartesian
coordinates on sufficiently accurate potential energy surfaces
that implicitly but automatically contain all the anharmonic-
ities and couplings of the system’s modes, is that no model
is imposed: if it exists, the resonance will manifest itself via
a splitting of the Fourier transform of the velocity autocorre-
lation function, the microscopic observable corresponding to
the experimental signal. When attempting to describe Fermi
resonances with these simulations, however, at least three
important questions must be addressed. First, the quality of
the DFT description of the system must be assessed. Second,
an accurate assignment of the modes originating the splitting
in the power spectrum must be possible to unambiguously
assign the feature to a Fermi resonance. Third, given that a
fully classical description of the statistical properties and of
the dynamics cannot capture correctly all the features of the
resonances between the discrete quantum modes of the system,
and that a full quantum description of the dynamics is beyond
current computational possibilities for condensed phase DFT-
based simulations, approximate tools to reinstate and com-
pute some of the quantum features of the spectra must be
developed.

Let us begin by considering the first question. Recent
work35 showed that full atomistic DFT-based simulations can
be used to study the Fermi dyad in supercritical CO2, pro-
viding results in good agreement with experiments. Crucially,
this work proves that, in spite of the approximations in the
electronic structure calculation, DFT models effectively the
coupling between the symmetric CO stretching and the bend-
ing. In particular, the DFT fundamental frequencies for these
modes are in the 1:2 ratio without which the resonance cannot
be observed. The focus of this work was twofold: to deter-
mine the effect of the isotopic substitution of O on the order
and intensity of the peaks in the Fermi dyad and to assess
the nature of this doublet. Ref. 35 is the first example in the
literature in which full atomistic DFT simulations were used
to investigate in detail Fermi resonances in supercritical CO2.
In fact, while previous simulations36,37 had correctly charac-
terized the structure and dynamics of the system, the possi-
ble origin of the splitting observed in the symmetric stretch

band from a resonance was mentioned but not investigated in
detail.

In the present paper, we then reconsider the Fermi reso-
nance in supercritical CO2 analyzing and complementing the
results of DFT-based classical molecular dynamics (MD) with
two new tools that target questions two and three above. The
first tool, mode localization, makes it possible to refine the
peak assignment to specific atomic motions. Mode localiza-
tion, in its different flavors, has been proposed to solve the
problem of unambiguous band assignment, but so far it is lim-
ited to the interpretation of fundamental bands.38–41 Here, we
extend this approach to the analysis of anharmonic combina-
tion bands such as Fermi resonances. Our approach includes
the degeneracy of the bending mode in the assignment proce-
dure. This feature was ignored in Ref. 35 and, as discussed in
Section III B, this leads to a misleading interpretation of the
resonance. The second tool that we use, quantum perturba-
tion theory, makes it possible to capture correctly the behavior
of the Fermi dyad splitting with temperature. As discussed
more in detail in the following, to allow for a coherent com-
parison of experimental data, in which the Fermi resonance
at higher temperatures has multiple peaks corresponding to
increasingly thermally excited discrete resonances, and simu-
lations, in which the classical dynamics can only produce two
broad peaks in the resonance, this splitting is defined as the
distance between the first moment of the power spectrum of
the left and right shoulders of the Fermi dyad. In Section II B,
it is shown that the classical evolution of the nuclei predicts a
monotonically decreasing amplitude of the splitting with tem-
perature, with zero splitting at zero temperature in the case
of perfect resonance. This result is qualitatively wrong due to
zero point energy effects that cause the decrease to saturate
as the temperature decreases and maintain a finite splitting at
zero temperature. Brute force quantum simulations to account
for them are, however, problematic for a realistic represen-
tation of this condensed phase system. In the following, we
then adopt an alternative strategy. In Section II B, an ana-
lytic formula for the Fermi resonance splitting as a function
of temperature is obtained, using quantum perturbation the-
ory on the model Hamiltonian originally proposed by Fermi,
to evaluate the short time evolution of a suitable correlation
function. When appropriately combined with data from the
classical DFT-based simulation, this formula makes it possi-
ble to correct the splitting calculated via classical molecular
dynamics with essentially no increase in the cost. Compar-
ison with experimental data at three different temperatures
and pressures shows that this procedure is very effective. Note
that previous DFT-based simulations of the system completely
neglected nuclear quantum effects. In contrast, our approach
complements fully classical nuclear propagation on a DFT
based potential, with a quantum correction procedure. As
explained more in detail in the following, this perturbative
approach makes it possible to account for quantum thermal
effects such as the zero point energy and the correct sam-
pling of excited vibrational states at a finite temperature. Of
course, since the time evolution of the system remains New-
tonian, dynamical quantum effects, such as coherence, are
beyond the scope of this work. These dynamical effects, how-
ever, are not relevant for the calculation of the splitting as a



134102-3 Basire et al. J. Chem. Phys. 146, 134102 (2017)

function of temperature, as demonstrated by the comparison
with experiments.

Supercritical CO2 was chosen as a reference system
because (i) it is well known that the double peak in CO2 is orig-
inated from a Fermi resonance and (ii) DFT-based simulations
are able to reproduce this feature, meaning that the stretching
and bending frequencies are correctly on resonance, as already
reported in the literature.35–37 Given these properties, this is the
ideal system to demonstrate the reliability and efficiency of the
two analysis tools introduced in this work. These tools, how-
ever, do not depend on a specific system and can be applied to
investigate Fermi resonances whenever a sufficiently accurate
DFT-based simulation is available, anharmonicity and cou-
pling among the resonant modes are not too strong allowing
for a perturbative treatment, and the relevant quantum effects
are mostly thermal in origin (zero point energy and quantum
fluctuations effects).

II. THEORY

In this section, the two new tools to characterize Fermi
resonances at a finite temperature are introduced. The first
starts from a previously developed mode localization method38

and extends it to include overtones. This mode localization
analysis acts on the data obtained directly from the DFT-based
trajectory. The second starts from an effective Hamiltonian
model for the system and applies quantum perturbation theory
to derive an analytic correction to the temperature behavior
of the splitting of the Fermi dyad that accounts for nuclear
quantum effects. The model contains one input parameter (in
addition to the effective frequencies of the modes) that can
be obtained either from the classical DFT-based simulation or
from experiments.

A. Mode localization including overtones
and couplings

Let us begin by summarizing the mode localization meth-
ods used as the starting point for our developments. Consider
a set of n coordinates q(t) = (q1(t), . . . , qn(t)) and their deriva-
tives q̇(t) = (q̇1(t), . . . , q̇n(t)) as obtained along a Newtonian
trajectory in a molecular dynamics, possibly DFT-based, sim-
ulation. From the Fourier transform of the self-correlation and
cross correlation functions of the derivatives, we construct the
matrix Pq ≡ (Pq

ij), with

Pq
ij(ω) =

∫ +∞

−∞

〈q̇i(0)q̇j(t)〉e
iωt dt. (1)

The diagonal elements of this matrix are the power spectrum
of each coordinate qi and are in general delocalized in fre-
quency, contributing to multiple peaks. We then look for a
linear transformation of the initial coordinates q(t) into modes
z(t) = (z1(t), . . . , zn(t)),

zi(t) = Uijqj(t), (2)

such that the power spectra of these new modes are as local-
ized as possible in the frequency space. The transformation
matrix that satisfies this requirement, U ≡ (Uij), is such that

the quantity∑
i



∫ +∞

−∞

ω4Pz
ii(ω) dω −

(∫ +∞

−∞

ω2Pz
ii(ω) dω

)2
(3)

is minimal with the constraint∫ +∞

−∞

Pz
ij(ω) dω = δij. (4)

In the equations above, the matrix Pz is constructed from the
modes z(t) in analogy with Eq. (1). This minimization problem
is easily solved using linear algebra.38

The method just described amounts to looking for an opti-
mal harmonic approximation to describe the dynamics of the
system.38 To go beyond and describe non-harmonic couplings
with overtones, as for the Fermi resonance, we first note that if
a mode żj(t) has a very localized spectrum around a frequency
ωj, the quantity zj(t)żj(t) oscillates at a frequency 2ωj and rep-
resents the overtone of mode j. Thus, starting from the set of
effective mode derivatives ż(t) = (ż1(t), . . . , żn(t)), we extend
this set by including terms of the form zj(t)żj(t) to generate an
initial set ṡ ≡ (ṡ1(t), . . . , ṡn+m(t)),{

ṡi(t) = żi(t) for 1 ≤ i ≤ n,
ṡi(t) = zji (t)żji (t) for n < i ≤ n + m,

(5)

where the indices ji indicate the modes whose overtones
are considered. From this extended set of coordinates, we
apply the localization procedure described above to trans-
form the set of coordinates ṡ to modes ẏ(t) via a linear
transformation

ẏi(t) = Vij ṡj(t). (6)

Relevant physical information can be extracted from the
localized modes. In particular, we compute the frequency of
each mode as the average frequency over their power spectrum
Py

ii(ω),

ωi =
∫
∞

0 ωPy
ii(ω) dω

∫
∞

0 Py
ii(ω) dω

. (7)

Note that these frequencies are in fact effective frequen-
cies, containing implicitly anharmonic effects, since they are
extracted from a molecular dynamics simulation done on the
fully anharmonic, possibly DFT-based, Hamiltonian for the
atoms.

Furthermore, the contributions of the modes ṡ ≡ (ṡ1(t),
. . . , ṡn+m(t)) in the resulting modes ẏ ≡ (ẏ1(t), . . . , ẏn+m(t)) is
evaluated from the normalisation condition (4), which can be
rewritten as

〈ẏiẏi〉 = VijVik〈ṡj ṡk〉 = 1. (8)

The contribution 4j→i of the mode ṡj in the mode ẏi can be
then defined as the sum

4j→i ≡
∑

k

VijVik〈ṡj ṡk〉 (9)

or more simply as the diagonal term

4j→i ≡ VijVij〈ṡj ṡj〉. (10)

In the present case, the modes ṡ ≡ (ṡ1(t), . . . , ṡn+m(t)) are
already orthogonal, since they were obtained from a prior mode
localization, such that only the diagonal terms remain in Eq. (9)
and the definitions above are equivalent.
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The localization procedure for determining effective nor-
mal modes described above works even for systems with
substantial anharmonicities and large bands (see, for exam-
ple, applications to N-methyl-acetamide38 or peridinine42).
Anharmonic effects can, however, lead to a broadening of
bands and, when this occurs, it is expected that the zj(t)żj(t)
terms may also not be (well) localized. Although an a priori
assessment of the convergence of the procedure is problematic,
to overcome this problem, higher terms in the localizations
could be included by expanding the basis of functions in
Eq. (5), e.g., including general terms as derivatives of suc-
cessive products of zi. This, however, goes beyond the aim
and the needs of this paper since in the case considered
here the localization was successful with the basis introduced
above.

B. Perturbative quantum treatment at finite
temperature for a model Hamiltonian

To develop an approximate method to reinstate some of
the quantum properties of Fermi resonances in CO2, we pro-
ceed in two steps. These steps are analytical and, as such, do
not require further simulations. However, they require input
parameters that are obtained by post-processing data from the
Newtonian DFT-based calculations or directly from experi-
ments. In the first step, we adopt the simplified description
of the phenomenon originally proposed by Fermi,1 by intro-
ducing an effective Hamiltonian for the resonant modes. This
Hamiltonian is composed by a diagonal (H0) and a coupling
(HP) term,

H0 =
p2

x

2m1
+

p2
ξ

2m2
+

p2
η

2m2
+

1
2

m1ω
2
1x2 +

1
2

m2ω
2
2(ξ2 + η2),

HP =
1
2
γ12x(ξ2 + η2).

(11)

All momenta and coordinates above are operators: x is the high
frequency mode describing the symmetric stretch in CO2, and
ξ and η are the two degenerate low frequency bending modes.
m1, ω1 and m2, ω2 are their respective masses and effective
harmonic frequencies. γ12 is the coupling parameter, that, in
our perturbative treatment, will be assumed to be small. We
also assume that in the range of pressures considered, the fun-
damental frequencies ω1 and ω2 are constant. Note that in
other models for Fermi resonances, H0 may not be simply har-
monic,31–34 but, for example, the potential for the stretch may
be chosen as a Morse potential to capture anharmonic shifts
in the experiments. However, since the values of our effec-
tive harmonic frequencies are obtained either from DFT-based
molecular dynamics done in Cartesian coordinates on a poten-
tial energy surface which directly has the anharmonicities, or
from experiments, these shifts are automatically incorporated
in our model.

In the second step of our approximate scheme, we charac-
terize the dyad and its behavior by choosing, in analogy with
the classical case, see Eq. (5), appropriate combinations of
three internal dynamical quantities that generate excitation of
the x mode and the overtones of ξ and η modes. Denoting by
a†1 the creation operator for x, and by a†2 and a†3 the creation

operators for ξ and η, we define

A†1 = ω1x − i
px

m1
=

√
2~ω1

m1
a†1,

A†2 =
(
ω2ξ − i

pξ
m2

)2

=
2~ω2

m2
a†2a†2,

A†3 =
(
ω2η − i

pη
m2

)2

=
2~ω2

m2
a†3a†3.

(12)

In the absence of coupling, the correlation function 〈A1A†1(t)〉

oscillates at pulsationω1, the high frequency, while 〈A2A†2(t)〉

and 〈A3A†3(t)〉 oscillate at 2ω2, corresponding to the overtone
of the low frequency. The cross correlations of this set of oper-
ators are all equal to zero by construction. In these conditions,
the power spectra associated with these correlation functions
are perfectly localized delta distributions. When the coupling
is turned on, the modes mix and a doublet of bands appears.

To decompose the doublet, we start from the operators
A†i and proceed, again in analogy with the classical case, to
construct new operators with maximally decorrelated spectra.
To illustrate how, let us consider a set of generic operators Yi.
At short times

〈YiY†j (t)〉 ≡ 〈YiY†j (0)〉 + 〈YiẎ
†

j (0)〉 t + O(t2)

≡ 〈YiY†j 〉 +
i
~
〈Yi[H,Y†j ]〉 t + O(t2). (13)

Based on the expression above, it is possible to obtain
linear combinations of the Ai, i = 1, 2, 3, operators that are
fully decorrelated up to first order in time. This is done by
solving the generalized eigenvalue problem

Hc = (Sc)~ω (14)

with the condition

c†Sc = 1, (15)

where 1 is the 3 × 3 unit matrix. H and S are matrices with
elements

Hij = 〈Ai[H,A†j ]〉,

Sij = 〈AiA†j 〉,

and ω is a diagonal matrix where each element represents a
frequency. From the 3 × 3 matrix c ≡ (cij), we construct new
operators Bj =

∑
i cjiAi such that

〈BiB†j 〉 = δij (16)

and
i
~
〈Bi[H,B†j ]〉 = iωiδij. (17)

The interpretation of Eq. (16) is that the excitations induced by
the operators Bj are uncorrelated at equilibrium. Furthermore,
the first moments over the power spectra of the operators Bi

are equal to 1
~ 〈Bi[H,B†i ]〉. Equation (17) then directly relates

the first moments ωi to, time independent, quantum thermal
average quantities. Finally, the fact that the matrix c solves
Eq. (14), means that these frequencies are as distant as possible
from each other. Thus, the power spectra of the operators Bi

have minimal overlap and are maximally localized.



134102-5 Basire et al. J. Chem. Phys. 146, 134102 (2017)

To determine, to first order in γ12, the matrix elements of
H and S, we use the Kubo formula43

e−β(H0+HP) = e−βH0
−

∫ β

0
dλ{e−βH0

eλH0
HPe−λ(H0+HP)}

(β = 1/kBT , where kB is Boltzmann’s constant and T the
temperature) to obtain the following expressions of H and S:

Hij ' Tr{e−βH0Ai[H
P,A†j ]}

−

∫ β

0
dλTr{e−βH0

eλH0
HPe−λH0Ai[H

0,A†j ]} (18)

and

Sij ' Tr{e−βH0AiA
†

j }

−

∫ β

0
dλTr{e−βH0

eλH0
HPe−λH0AiA

†

j }. (19)

Given the form of the Hamiltonian and of the opera-
tors A†i , analytic expressions for the matrix elements can be
obtained. These expressions are explicit functions of β, γ12,
via HP, and of the unperturbed frequencies and masses of
the modes, via A†i . For a given system, the only unknown
parameter required for their calculations is γ12. As we will
show, this parameter can be estimated starting from the classi-
cal splitting and fed back to the equations above to obtain the
quantum correction. The details of these calculations are given
in the Mathematica spreadsheet in the supplementary material.
Here we report the results for the reader’s convenience. First
of all, observe that both H and S are symmetric matrices. Fur-
thermore, permutation symmetry of the two bending modes
implies that

S12 = S13, S22 = S33, S23 = 0 (20)

with analogous results for the matrix elements of H. Finally,
explicit calculation shows that all matrix elements depend on
the coupling term via the quantity χ12 = γ12/(

√
m1m2) that

will be used from now on. The expressions for the non-trivial
matrix elements are

S11 =
2eβ~ω1~ω1

m1(eβ~ω1 − 1)
, (21)

S12 = −χ12
~2

4
√

m1m2
sinh−1

[
β~ω1

2

]
sinh−1

[
β~ω2

2

]2

×
sinh

[
1
2 β~(ω1 − 2ω2)

]

ω1 − 2ω2
, (22)

S22 =
8e2β~ω2~

2
ω2

2(
eβ~ω2 − 1

)2m2
2

(23)

and
H11 = ~ω1S11, (24)

H12 = χ12

~3
(
−ω2 + ∆ coth

[
β~ω2

2

] )
2
√

m1m2(ω1 − 2ω2)
(25)

with

∆ =

(
ω1 − 2ω2 + ω1 coth

[
β~ω1

2

]
− ω2 coth

[
β~ω2

2

])

and
H22 = 2~ω2S22. (26)

Given the expressions above, the eigenvalues ωi and con-
sequently the value of the splitting ∆ω are calculated by
solving the secular equation, Eq. (14). Explicit, but involved,
expressions for these quantities are given in the Mathematica
notebook in the supplementary material. In the rest of this sec-
tion, we shall consider two limits of the perturbative treatment
discussed above from which relevant physical information can
be obtained.

Let us consider first the classical limit, obtained by letting
~→ 0 in the matrix elements of S and H. This limit provides
us with a consistent way to connect the quantum perturbative
approach with the DFT-based simulations in which classical
statistic and dynamics are employed. In particular, the classical
limit for the value of the splitting, which contains χ12, will
be used as the basis of our estimate for this parameter. The
classical limit of the matrix elements will also make it possible
to discuss the zero temperature behavior of the Fermi splitting
in a purely classical description of the dynamics. As shown
in the supplementary material, the classical limit of the non-
trivial matrix elements is

S11 =
2
βm1

, (27)

S12 = −χ12
1

β2√m1m2ω1ω
2
2

, (28)

S22 =
8

β2m2
2

(29)

and

H11 = ~ω1S11, H22 = 2~ω2S22, H12 = 0. (30)

Using the results above, the classical limit of the splitting to
first order in χ12 is

∆ωcl(T ) =

√√
kBT χ2

12

ω1ω
3
2

+ (ω1 − 2ω2)2. (31)

The classical splitting can also be obtained as an output
of the (classical) DFT-based MD of the system. Using the
value computed from the simulations and inverting the equa-
tions above, then, provides an estimate of the parameter χ12

for the off-resonance and perfect resonance case. This esti-
mate can be fed back in the quantum perturbation formulae to
obtain the splitting of the Fermi dyad as a function of the other
parameters, e.g., temperature.

Note that, in the case of perfect resonance, ω1 = 2ω2, the
splitting is given by

∆ωres
cl =

2
√

2kBT

ω2
1

χ12. (32)

and exhibits a
√

T dependence as a function of temperature.
This implies, in particular, that the splitting will vanish at
zero temperature in the limit of perfect resonance. This can
be understood as follows. Semiclassically, the Fermi splitting
is due to the modulation of the force acting on the symmetric
stretch, proportional to (ξ2 + η2), which oscillates at 2ω2. The
amplitude of this modulation is governed by the amplitude of

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013713
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013713
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013713
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the fluctuations of the two low frequency modes. At a finite
temperature, these fluctuations are finite leading to a non-zero
splitting and explaining how a classical simulation can cap-
ture the phenomenon of the Fermi resonance. However, when
T → 0, so do the classical fluctuations leading to the absence
of classical splitting in this limit.

The zero temperature behavior of the classical splitting
just described, however, is qualitatively wrong and, as shown in
Sec. IV, for CO2 leads to discrepancies with experiments even
at room temperature. In fact, the same description as above
for the first moment of the two multiplets of the Fermi dyad,
but in a quantum framework, indicates that at zero tempera-
ture, zero point energy effects will maintain finite amplitude
oscillations, and therefore non-zero splitting, for the quantum
Fermi resonator. This argument can be made more precise by
considering the splitting obtained by computing the matrix ele-
ments of S and H as T → 0. In this limit, we have (see the
supplementary material)

S11 =
2~ω1

m1
, S12 = 0, S22 =

8~2ω2
2

m2
2

, (33)

H11 = ~ω1S11, H22 = 2~ω2S22, H12 =
χ12~

3

√
m1m2

(34)

from which the zero temperature quantum expression of the
Fermi splitting is obtained,

∆ω∗ =

√√
χ2

12~

2ω1ω
2
2

+ (ω1 − 2ω2)2. (35)

We shall see in Sec. IV that, with the value of χ12 obtained
from the classical DFT-MD, the expression above provides
an excellent estimate of the splitting for CO2 at T = 0 as
extrapolated from experiments. More in general, our tempera-
ture analysis (using the expression for the splitting calculated
as discussed here and shown in the supplementary material)
indicates that molecular dynamics for classical nuclei will
underestimate the splitting for low temperatures. The defini-
tion of “low temperature” will, of course, vary depending on
the system and on the interplay between the coupling strength
and the values of the unperturbed frequencies of the resonating
modes.

Let us conclude this section with some comments on
the strengths and limits of the proposed approach. First, we
have chosen the simplest model Hamiltonian which can be
used to post-process the Newtonian simulation data (in the
present case, they are DFT-based molecular dynamics) and
restore, approximately, some quantum nuclear effects. Note
that, although our model does not include explicitly diagonal
anharmonicities, the frequencies used in Eq. (11) are in fact
effective frequencies obtained, for example, from DFT-based
simulations (via Fourier transform of the velocity-velocity cor-
relation function on the DFT anharmonic potential). Therefore
these frequencies include anharmonic effects. In this sense,
the model is inspired by the procedure followed in spectro-
scopic interpretations in which the harmonic frequencies are
first shifted for anharmonic effects and then the coupling is
turned on.44 Furthermore, to limit as much as possible the
number of parameters to be obtained combining the simula-
tions and the model, we have chosen a description in which

the only parameter other than the effective frequencies is γ12.
In spite of its simplicity, this Hamiltonian has proved effective
for CO2

1,44,45 but also for other systems like peridinin,9 CS2,46

thioacetamide and methylthiourea,47 aniline,7 or ammonia.14

Furthermore, as reported by Sibert et al.24 the choice between
the different forms of Hamiltonians with the Fermi coupling
as a potential energy or as a kinetic energy term is “solely
one of perspective.” Indeed it amounts to a choice of rectilin-
ear vs curvilinear coordinates. As they reported, “at this level
the curvilinear and rectilinear approaches are of comparable
accuracy.” The obvious advantage of the chosen model Hamil-
tonian is that all the integrals required to compute the matrix
elements in the perturbation treatment at a finite temperature
can be performed analytically.

Second, our formal developments rely on two approx-
imations: a short time description of the properties of the
time correlation function, see Eq. (13), and perturbation the-
ory valid to first order in γ12. The second approximation will
fail for systems with strong anharmonic couplings. The first
limits, among other things, the quantum observables that we
can attempt to describe with reasonable accuracy. As shown in
Eq. (17), short time accuracy is, however, enough to estimate
the value of the first moment of the power spectrum of the local-
ized modes, the quantity that we focus on in this work. Note
that, when computing exactly this average value, the contribu-
tion of different discrete quantum levels appears as a weight for
a continuous observable. These discrete weights are, of course,
not accessible in our simulation which samples instead the
(continuous) classical thermal distribution generated by the
Newtonian dynamics plus thermostat on the full DFT-based
potential. The perturbative treatment provides, however, a cor-
rection procedure for the average which reinstates some of the
properties of the quantum thermal distribution. (See also the
discussion at the end of Section IV A.)

III. MATERIALS AND METHODS
A. Density functional based molecular
dynamics simulations

We performed density functional based Born-Oppenheimer
molecular dynamics (DFT-MD) simulations using the soft-
ware CP2K48 and in particular the Quickstep algorithm.49

The latter employs a hybrid Gaussian plane-wave (GPW)
method.50 We use the Goedecker–Teter–Hutter (GTH) norm-
conserving pseudo-potentials51–53 to replace the core elec-
trons. We cut off the electronic density at 400 Ry and
used NN50 smoothing for applying the exchange–correlation
potential on the real space grid. For C and O atoms, we use a
triple-zeta valence doubly polarised (TZV2P) basis set.54 The
exchange–correlation interactions are taken into account by
the gradient-corrected BLYP functional.55,56 We add disper-
sive interaction corrections by using the DFT-D3 scheme,57

with a cutoff of 15 Å. The simulations were performed with
128 CO2 at a constant volume with the densities taken from
the NIST database58 so as to match the experimental pressures.
These densities are ρ = 0.7 g cm�3 for T = 315 K and P = 120
bars, while ρ = 0.56 g cm�3 for both simulations at T = 550
K and P = 660 bars and T = 773 K and P = 1160 bars. The
temperature was held fixed using a chain of four Nose-Hoover

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013713
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013713
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thermostats and the Yoshida algorithm59 with a characteris-
tic time set to 2.4 ps. The time step for the Born-Oppenheimer
dynamics was δt = 2 fs and the total integration time was 40 ps.
The initial conditions were generated from long MD trajecto-
ries using the MSM3 force-field.60

B. Definition of internal modes for CO2 from molecular
dynamics trajectories

The four internal modes of CO2 are shown in Figure 1
for the reader’s convenience. They are the asymmetric and
symmetric stretching plus two degenerate bendings (in xz and
yz planes following our reference system).

The degeneracy of the two bending modes poses a diffi-
culty when extracting the dynamics of the internal modes for a
linear molecule such as CO2 from a molecular dynamics sim-
ulation. Commonly, if we define an internal mode to be a bend
θ between three atoms, A, B, C, with B the central atom, the
bend will be extracted from a molecular simulation trajectory
as the angle between the vectors ~BA and ~BC taken to be in the
interval [0, π],

θ = acos
~BA · ~BC

‖ ~BA‖ · ‖ ~BC‖
. (36)

However, only one such bend can be defined instead of two
that are necessary when A, B, and C are aligned. Around the
linear geometry, these two modes are bending motions in two
orthogonal planes that contain the atoms A, B, and C, as in the
bottom part of Figure 1. If these two planes are taken arbitrarily
along the molecular simulation trajectory, this may lead to

FIG. 1. Schematic representation of internal modes of CO2. The molecule
lies on the z axis, such that the two (degenerate) bending modes are in xz and
yz planes.

spurious dynamics of the two bends. To avoid this problem,
we define the two internal bending modes with respect to a
molecular frame uniquely defined along the dynamics (barring
a choice made for the initial configuration). The molecular
frame is defined by considering, at each step of the simulation
the Eckart frame61 of the CO2 molecule. The ~Z axis is taken
as the unitary vector along the reference CO2 molecule used
to define the instantaneous Eckart frame. Then the ~X and ~Y
vectors are two orthogonal unit vectors both orthogonal to ~Z
defined such that the rotation that transforms the frame ~X~Y~Z
at time t − δt to the frame ~X~Y~Z at time t has no component
along the ~Z axis.

Given this instantaneous molecular frame, we define the
four internal modes as follows. r1 and r2 are the two CO dis-
tances and θX , θY are taken as the angles of the projections
of the two CO vectors on the planes that contain the center of
mass and the vectors ~X , ~Z and ~Y , ~Z , respectively. These two
vectors are now taken to be in the interval [−π, π] since the
XZ and YZ planes are oriented by the two vectors that define
them.

It will be shown in Sec. IV that this choice of the reference
frame leads to two modes whose spectrum is well localized at
the expected CO2 bend frequency and is indeed degenerate.
Performing mode localization starting from the coordinates
r1, r2, θX , and θY leads to 4 effective normal modes that cor-
respond to the CO2 symmetric and antisymmetric stretches
while the two modes θX and θY are left unchanged by symme-
try. Since this set of modes is unable to unambiguously assign
the origin of the peaks in the Fermi dyad, we then repeat the
mode localization using as a basis the set of 6 coordinates
obtained by adding to the four modes indicated above the quan-
tities θX (t)θ̇X (t) and θY (t)θ̇Y (t), as discussed in Section II A. In
Sec. IV we show that with this extended set both peaks of the
dyad are assigned to a unique mode. For the simplicity of nota-
tion, in the following we return to the lower case notation, e.g.,
θx, to indicate the bending modes, but these are calculated in
the molecular frame just described.

C. Perturbative calculations

The analytical expressions of the matrix elements of
matrices H and S (from which Equations (21)–(26) were
derived), as well as the ~→ 0 and T → 0 limits and the solu-
tions of the generalized eigenvalue equation, Eq. (14), were
obtained using the Mathematica62 software. The notebook for
the calculation of these terms is provided in the supplementary
material.

D. Raman experiments

The experimental spectra were obtained using the high-
pressure high-temperature setup of the Neel Institute (Greno-
ble, France).63 This setup was designed to integrate an auto-
clave in the Raman spectrometer setup. We used the green
wavelength of an Ar laser (λ = 514.5 nm) from Spectra
Physics (Stabilite 2017) and a T64000 Raman spectrometer
from Jobin-Yvon. The Raman spectrometer was calibrated
using the N2 gas peak (2332 cm�1) at room-temperature and
ambient pressure. The spectra were recorded using a 1800
grooves mm�1 grating on the 1200–1500 cm�1 range and the
background arising mainly from the windows of the autoclave

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013713
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-146-013713


134102-8 Basire et al. J. Chem. Phys. 146, 134102 (2017)

was removed. Sapphire cell and pistons (with silicon o-ring)
were used for the sample. The cell was charged with CO2 dry
ice, the cell being immersed in liquid nitrogen to maintain the
CO2 solid during the loading phase in the autoclave. Mea-
surements were repeated twice to ensure the reproducibility
of the spectra. The Fermi splitting was determined by taking
the difference between the value of the center of mass of the
spectra in the range ω ∈ [1200, 1325] cm�1 for the lowest
frequency and ω ∈ [1325, 1500] cm�1 for the highest. In this
way, it is possible to obtain average peak positions and one
splitting value for each temperature. This average value gives
us an observable which can be compared to results obtained
from DFT-based simulations (in which by definition the peaks
are a thermal average over a Newtonian dynamics) and to our
thermal average quantum treatment.

IV. RESULTS
A. DFT-based classical molecular dynamics of CO2

Figure 2 shows the vibrational density of states (VDOS)
obtained from our DFT-based MD simulations of super-
critical CO2 at three different temperatures and pressures.
Peaks appear in proximity of the frequencies of the bend-
ing mode around 630-635 cm�1, of the symmetric stretch
around 1260 cm�1 (a low frequency component at 1211-
1253 cm�1 and a high frequency one at 1311-1328 cm�1),
and of the antisymmetric stretch around 2250-2273 cm�1.
The peak around 1260 cm�1 is split into two components,
a putative Fermi dyad, which are seen to evolve as a func-
tion of temperature and pressure. As reported previously,35

Newtonian dynamics based on DFT are able to correctly
describe a resonance in the region of the Fermi dyad at par-
ticular temperatures. We observe some small differences in
the peak position with respect to this previous work: their
peaks at 315 K are at 632, 1236, 1335, and 2315 cm�1, while
our simulations provide at 315 K peaks at 638, 1253, 1311,
and 2273 cm�1. The differences can originate from different
details in the molecular dynamics: we used the BLYP func-
tional, while Windisch et al.35 used PBE functional, we used

FIG. 2. Vibrational density of states, from DFT-MD simulations at different
temperatures and pressures. Black curve: T = 315 K, P = 120 bars; orange
curve: T = 550 K, P = 660 bars; red curve: T = 773 K, P = 1160 bars.

a larger energy cutoff for plane-wave expansion (400 Ry vs
350 Ry), we have 128 CO2 molecules, while in the previous
study only 32 CO2 molecules were considered, and we run
for 40 ps, while the previous work reports simulation times
of 20 ps. The differences between the functionals are rela-
tively small and they both catch the key experimental findings,
validating the adopted DFT model.

As discussed earlier, one difficulty in extracting individ-
ual vibrational modes of CO2 is the presence of two bendings.
Figure 3(a) reports the power spectrum of the symmetric and
asymmetric stretches and of a single bending defined simply
as the OCO angle. It clearly appears that this simple definition
leads to a mode that has no contribution in the true bend-
ing region around 630 cm�1 but on the contrary has its main
contribution in the region of the overtone of bending.

The assignment of the peaks in Ref. 35 was performed by
analyzing the spectrum of the velocity autocorrelation func-
tion. This quantity was first projected along the symmetric
stretch mode, and the contribution of the (single) bending mode
included in the calculation was then determined by subtraction.
In the following, we show how a more detailed understand-
ing of the nature of the different peaks can be obtained via
the mode localization procedure introduced in this work. To
that end, we begin by considering the localized power spectra
computed from the four internal normal modes: r1, r2 (CO
distances), and θx, θy (bendings) introduced as the minimal
set in Section III B. This power spectrum, at T = 300 K, is
reported in Figure 3(b). The peaks corresponding to the Fermi
dyad in the vibrational density of state shown in Figure 2 are
broader than the reconstructed power spectrum of the internal
effective normal modes in Figure 3(b), due to the broadening
induced by the rotation of the CO2 molecule.

As expected, two degenerate modes are observed at
ωb = 634 cm�1 These are the original two bends θx and θy. The
peak atωas = 2271 cm�1 is attributed to the asymmetric stretch
r1 � r2 and the double peak features at aroundωs = 1260 cm�1

to the symmetric stretch r1 + r2.

FIG. 3. Results of DFT-MD simulation at 300 K. Panel (a): power spectra
of the OCO angle and the symmetric and asymmetric CO stretches. Panel
(b): power spectra of the four effective modes. Panel (c): power spectra in the
set of effective modes extended to represent the overtones. In the middle and
bottom panels, the moving frame described in the text has been used, result-
ing in the elimination of the rotational broadening of the peaks compared to
Figure 2.
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The power spectrum of the symmetric stretch clearly
exhibits the double peak feature characteristic of the Fermi
resonance. With a vibrational basis of four internal modes it is
then not possible to discriminate the origin of the two peaks.
This can instead be done by extending the set of effective
modes as indicated at the end of Sections II A and III B. In
particular, we add to the set of four modes used in Figure 3(b)
the functions θx(t)θ̇x(t) and θy(t)θ̇y(t). Figure 3(c) shows the
power spectra of the new localized modes. Three peaks now
appear in the region around 1260 cm�1. The central feature,
located atω2b = 1261 cm�1, is close to the double ofωb = 634
cm�1. This is the power spectrum of the asymmetric combina-
tion θx(t)θ̇x(t)− θy(t)θ̇y(t), which by symmetry cannot couple
to the symmetrical stretch, and we thus assign it to a pure
bend overtone. The two side peaks at ω− = 1233 cm�1 and
ω+ = 1317 cm�1 are now well localized modes with a single
peak feature. The mode localization procedure38 attributes
them to linear combinations of the symmetric stretch, r1 + r2,
and the symmetric bend overtone θx(t)θ̇x(t) + θy(t)θ̇y(t). This
unambiguously shows that the double peak feature observed
in the vibrational density of states indeed arises from a Fermi
resonance coupling these two modes.

The weight of each mode in this decomposition can be
quantified as described in Sec. III, Eq. (9), and subsequent
discussion. We obtain that the lower peak of the Fermi dyad
is composed of 36% of the symmetric stretch and of 32% of
each bend overtone. Symmetrically, the weight of the sym-
metric stretch in the higher peak is 66% and that of each bend
overtone is 17%. The resonance is not perfect as the weight of
the symmetric stretch is not exactly 50%.

The analysis described above was repeated on MD spectra
computed at different temperatures to obtain a quantitative
estimate of the splitting ∆ωc = ω+ − ω− as a function of T.
The splitting at different temperatures is the best quantity to
compare with experiments, since the absolute peak position is
shifted (as already remarked by Windisch et al.35) due to the
functional employed. The experimental Raman spectra as a
function of temperature in the Fermi dyad region are reported
in Figure 4. Note that the experimental peak position for the
dyad at 315 K compares well with the previously reported data
at 313 K35: 1278 and 1383 cm�1 from the present data vs 1285
and 1389 cm�1 from the one reported by Windsch et al.35

Figure 4 shows the experimental spectra obtained for
supercritical CO2 at different temperatures and pressures. Note
that the high frequency part of the Fermi dyad has an inten-
sity about twice that of the low frequency part. This is in very
good agreement with the mode localization analysis of the sim-
ulation results, which assigns a weight twice as large for the
symmetric stretch to the higher frequency peak as compared
to the lower frequency peak.

Figure 4, however, also shows some striking differences
with the DFT-based classical calculations. In particular, in
experiments each “shoulder” in the Fermi dyad is in fact a
multiplet. As the temperature increases, satellite peaks appear
close to the main ones and grow in intensity. As indicated in
the seminal Fermi paper,1 the satellite peaks originate from
resonance transitions from different initial vibrational states.
The intensity of these peaks is related to the thermal popula-
tion while their position is fixed by the energy of the quantum

FIG. 4. Experimental Raman spectra of CO2 in the Fermi dyad region. Black
curve: T = 315 K, P = 120 bars; orange curve: T = 550 K, P = 660 bars; red
curve: T = 773 K, P = 1160 bars.

levels. These features are absent in the computational spectra
of Figure 3, obtained directly from the Newtonian simulations
on the DFT potential (with no use of the theory developed
in Section II B), by computing the Fourier transform of the
fully classical velocity time-auto correlation function. This
fully classical correlation function cannot reflect the quanti-
zation of vibrational modes or the correct quantum thermal
population of these modes. To compare experiments and sim-
ulations, we have then focused on the average frequency in the
experimental multiplets and in the broad simulations peaks.
Averaging alone is, however, not sufficient to capture in the
simulation the variation of the relative intensities of the satellite
peaks with temperature as reflected in the shift of the position
of the center of mass (i.e., first moment) of the multiplets.
Table I reports the experimental and DFT-based splitting as a
function of temperature. The values of the frequencies used
to determine the splitting correspond to the center of mass of
the high and low frequency bands in Figures 2 and 4. Both
experiments and simulations show a strong dependence of the
splitting on temperature. The agreement between calculations
and experimental data is good at high temperatures, but at T
= 315 K, the classical DFT-based result underestimates the
splitting by about 25 cm�1. This finding is a consequence of
the near

√
T dependence of the classical splitting discussed

in Section II B and indicates that nuclear quantum effects
are already relevant for CO2 at experimentally relevant condi-
tions. At high temperatures, the results of the simulations with
Newtonian dynamics are in better agreement with the experi-
ments because anharmonicities are fully accounted for and a

TABLE I. Experimental Fermi splittings (∆ωExp) and values obtained from
the DFT-based molecular dynamics (∆ωsim

c ). Values are reported in cm�1.

T (K) ∆ωExp ∆ωsim
c

315 109.5 84.4
550 118.6 122.0
773 131.9 133.4
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classical approximation for the nuclear properties becomes
more appropriate.

In Sec. IV B we show that our perturbative approach can
correct for this. This can be rationalized as follows. In quantum
mechanics, the position of the center of mass of the peaks is
related to the value of a correlation function at short times. For
these short times, a classical approximation of the dynamics
is sufficient to describe the time evolution of the correlation
function, provided that the correct quantum thermal average
is sampled. This has been demonstrated by several calcula-
tions based on linearized and other approximate methods for
computing quantum time correlation functions.64–71 In these
approximate methods, sampling of the quantum thermal prob-
ability is obtained by brute force, but this is too expensive
for a range of condensed phase applications. The procedure
that we adopt circumvents this problem by including quantum
effects in the thermal averages analytically via perturbation
theory. The physics described in this way focuses on the
initial population of energy levels and average quantum fluc-
tuations of the vibrational modes. Note that our computational
approach (including the quantum perturbative treatment) does
not allow assigning the experimental multiplets to any specific
state-to-state transition, since it is by construction restricted to
average properties “smeared” over the multiplets. This level of
analysis is beyond the capability of a method still fundamen-
tally based on classical time evolution and on a very simple
model Hamiltonian.

As a final comment, note that the experimental spectra
also show that the pressure dependence of the features is small,
supporting our theoretical development where only tempera-
ture is explicitly taken into account. This weak dependence
can be rationalized by observing that pressure impacts the
vibrational frequencies only via intermolecular interactions,
a negligible effect at the considered densities as confirmed by
the fact that the frequencies of the bending and the asym-
metric stretch in Figure 2 do not change. Further support
to this assumption comes from recent work on solid CO2

under pressure,72 showing that appreciable effects on the dyad
require pressures order of magnitudes larger than those consid-
ered here. Experiments at a fixed temperature73,74 also show
that appreciable (few wave numbers) effects on the position
and width of the bands require huge density variations. The
density range spanned in our simulations and experiments
is much smaller, and we can then consider the temperature
effects dominant. Note, however, that density will affect the
interaction between the CO2 molecules and local formation
of clusters75 and thus the unperturbed vibrational quantum
levels of each CO2 molecule. The extent to which this will
also modify the coupling constant is indeed an interesting
question for future work. We have assumed here that, in
the small density range we have considered, this dependence
is negligible. In a different context, the effect of solvents
on the Fermi resonance was studied by coupling the sim-
ple Fermi model with resonance Raman experiments and ab
initio calculations for a carotenoid molecule. In that case,
the environment turned out to have a primary effect on the
fundamental (unperturbed) frequencies and through it on the
resonance splitting, while the effect on the coupling could be
ignored.9

B. Quantum perturbation theory applied to CO2

To account for nuclear quantum effects on the splitting,
we now apply the theory developed in Section II B to the case
of CO2. Recall that in this case, the high frequency mode,
x, is the symmetric stretching, while the two degenerate low
frequency modes, ξ and η, are the bendings in xy and yz planes
(we employ the axis convention of Figure 1).

The values of the parameters in the model Hamiltonian,
Eq. (11), are specified as follows. The frequencies ω1 and
ω2 are determined from the effective normal mode proce-
dure described above applied to the classical dynamics of the
nuclei (see Figure 3). Once again, we stress that these effective
frequencies reflect the anharmonicity of the potential energy
surface. For the masses of the modes, we adopt the standard
reduced masses of CO2.76 χ12 is estimated from the classical
MD by inverting Eq. (31). We obtained three values for χ12

using the classical splittings reported in Table I at the three
simulated temperatures and used their average as our best esti-
mate. We observe very small variations of χ12 at the three
temperatures, within 3% of the average value, justifying our
model with χ12 assumed independent of temperature.

We then correct for quantum effects by solving the gen-
eralized eigenvalue problem, Eq. (14), with the value of the
coupling computed as described above and using the effective
frequencies obtained from the localization procedure as the
average frequency for each band. The resulting Fermi split-
ting of CO2 as a function of temperature is shown in Figure 5
and compared with experiments and the classical model. In
the figure, the experimental splittings are shown as triangles,
while the solid curve reports the result of the quantum pertur-
bative approach with the values of the model obtained from
the DFT-based simulations as described above, and the clas-
sical model results are shown as a dotted-dashed curve. At

FIG. 5. Splitting of the Fermi dyad in supercritical CO2 as a function of tem-
perature obtained via: experiments (triangles); DFT-MD (crosses); quantum
model with coupling and frequencies from DFT-MD (solid curve); quantum
model with coupling and frequencies from the experiment (dashed curve);
classical model (dotted-dashed curve).
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T = 315 K, the agreement with experiments is nearly per-
fect demonstrating the effectiveness of the quantum correction.
This is even more striking when comparing with the result from
the bare DFT-MD simulation, shown as crosses. The accuracy
of the quantum correction at low temperatures can be further
appreciated by considering the T → 0 limit. The incorrect-
ness of the classical model shown in the same figure suggests
that a classical dynamics approach should fail in reproducing
the quantum splitting from about 500 K down to 0 K. The
experimental behavior can be extrapolated from Figure 4 by
observing that the intensity of the satellite peaks goes to zero
with the temperature. The separation of the maxima of the two
main experimental peaks then provides us with an estimate of
the splitting at T = 0 K. This splitting is∆ω∗(exp.) = 104 cm�1.
The splitting at T = 0 K calculated from the analytical quan-
tum expression (see Eq. (35)) is ∆ω∗(th.) = 104.1± 3cm−1, in
excellent agreement with the experimental value (the error of
3 cm�1 is estimated from the uncertainty on the average value
of χ12 from our three estimates).

Figure 5 shows that the agreement between the prediction
of the analytical quantum approach and experiments deterio-
rates slightly at higher temperatures with errors of 8 cm�1 and
12 cm�1 at T = 550 K and T = 773 K, respectively. We attribute
this to the deficiencies of the density functional used for the
DFT-MD simulation. To verify this hypothesis, we have also
derived parameters for the quantum model (ω1, ω2, and χ12)
directly from experiments. The dashed curve in Figure 5 shows
the temperature dependence of the splitting as obtained by
parameters extracted from experiments. The agreement with
experimental values is now very good in the whole temperature
range, showing that the perturbative treatment and the sim-
ple Fermi Hamiltonian model lead to quantitative predictions
even at high temperatures. The frequencies extracted from the
experimental spectra are about 5% higher than those obtained
from DFT-MD, typical for density functional calculations at
the level adopted here.

A satisfactory agreement is also reached for the coupling
parameter for which the DFT-MD based value is 5% higher
than the one based on the experiment. This slightly larger value
compensates for the lack of quantum effects at high temper-
atures in Newtonian simulations, see Figure 5. At room tem-
perature and below, however, classical DFT-MD qualitatively
fails to reproduce the behavior of the Fermi splitting.

V. CONCLUSIONS

DFT-based classical simulations were combined with ana-
lytical results obtained via quantum perturbation theory to
study the Fermi resonances. The approach described makes
it possible to study non-linear resonances including quan-
tum nuclear effects in realistic condensed phase simulations
with affordable numerical effort and was used to investigate
more in detail peak assignment and the behavior of the Fermi
dyad splitting with temperature in the paradigmatic case of
supercritical CO2.

We first showed how the dyadic feature in the calculated
spectrum can be unambiguously assigned to a Fermi resonance
via a mode localization procedure that identifies appropriate
combinations of internal vibrational modes of the molecule.

The mode localization procedure, originally devised for clas-
sical vibrations, was here generalized to the quantum case and
extended (both classically and quantum) to include overtones.
Furthermore, by adopting the model Hamiltonian proposed
by Fermi, the problem of identifying the Fermi modes and the
splitting as a function of temperature was analytically solved
via a perturbative treatment in the coupling parameter γ12.
With this approach, we are able to characterize correctly the
behavior of the splitting, defined as the difference between
the first moments of the multiplets in the experimental Fermi
dyad, as a function of temperature, with increasing accuracy
at low temperatures where the effective model Hamiltonian
becomes a better model for the system. It was also shown
that the coupling parameter, the only unknown in our model,
can be obtained from the DFT-based classical calculations or
experiments.

Comparison with experiments shows that the protocol
introduced in this work reproduces the correct behavior of the
splitting in the zero temperature limit and gives results that are
in very good agreement with experiments over a significant
range of temperatures for the prototypical case of supercritical
CO2. Within the limits discussed in Sec. II, the two steps pro-
posed to identify the resonance and include quantum effects
are however applicable to general systems. Note in particular
that, in discussing our quantum correction procedure, we dis-
tinguished the role of quantum effects on the dynamics and
on the sampling of initial conditions. Our procedure approx-
imately accounts for quantum thermal effects, which include
both zero point energy and the population of higher vibrational
states at a finite temperature. When quantum effects are impor-
tant in the dynamics, the method proposed for correcting the
spectra will likely fail. An example of this kind is, probably,
the Fermi resonance in the Zundel cation, as exemplified by the
difficulty for path-integral techniques to reproduce the correct
spectra although there is correct sampling of the quantum dis-
tribution.77 Even in these situations, however, the first analysis
tool described in this work, i.e., the mode localization proce-
dure, can be used to interpret and assign Fermi dyads. Note also
that this procedure could also be used in conjunction with other
approximate methods for the dynamic, such as ring-polymer,
centroid, linearized, or even semiclassical approaches, since
it operates only on the basis of correlation functions. Finally,
note also that the procedure was applied in this work to a 1:2
resonance, but it can be generalized to any vibrational level
and combination band resonances. Future work will focus on
these developments.

SUPPLEMENTARY MATERIAL

See supplementary material for Mathematica notebook
for the perturbative calculation of Fermi splitting at a finite
temperature for the case of CO2. We supply a pdf file as well
as a file which can be loaded directly into Mathematica.
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