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ABSTRACT
Physically motivated and mathematically robust atom-centered representations of molecular structures are key to the success of modern
atomistic machine learning. They lie at the foundation of a wide range of methods to predict the properties of both materials and molecules
and to explore and visualize their chemical structures and compositions. Recently, it has become clear that many of the most effective repre-
sentations share a fundamental formal connection. They can all be expressed as a discretization of n-body correlation functions of the local
atom density, suggesting the opportunity of standardizing and, more importantly, optimizing their evaluation. We present an implemen-
tation, named librascal, whose modular design lends itself both to developing refinements to the density-based formalism and to rapid
prototyping for new developments of rotationally equivariant atomistic representations. As an example, we discuss smooth overlap of atomic
position (SOAP) features, perhaps the most widely used member of this family of representations, to show how the expansion of the local
density can be optimized for any choice of radial basis sets. We discuss the representation in the context of a kernel ridge regression model,
commonly used with SOAP features, and analyze how the computational effort scales for each of the individual steps of the calculation.
By applying data reduction techniques in feature space, we show how to reduce the total computational cost by a factor of up to 4 without
affecting the model’s symmetry properties and without significantly impacting its accuracy.
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I. INTRODUCTION

Supervised machine learning (ML) methods are gaining
increasing importance in the field of atomistic materials modeling,
where they are often used to replace accurate, but computationally
prohibitive, electronic structure calculations. Furthermore, unsu-
pervised ML methods are gaining prominence as a way to interpret
simulations of ever-increasing complexity.1–7 All thesemethods fun-
damentally rely on a transformation of the system’s atomic coor-
dinates into a form amenable to the construction of efficient and

transferable machine-learning models. Usually, this implies that the
features that represent an atomic configuration reflect the trans-
formations (invariance or covariance) of the target properties with
respect to fundamental symmetry operations and that the predic-
tion of the extensive properties of a structure is decomposed into
that of local contributions, written as a function of a description of
the neighborhood of individual atoms.8,9

We will focus, for the majority of this paper, on the problem
of regression of a property expressed as a function of these trans-
formed coordinates (hereafter called just “representation”). By far,
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the most common application of structure-property regression in
the context of atomistic simulations is in the fitting of potential
energy surfaces, which are used in molecular simulations or to com-
pute thermodynamic averages. The majority of the considerations
we make here applies to the prediction of any scalar property of the
system, although the calculation of gradients might be less important
than that in the case of potentials, and we use the terms “machine-
learned interatomic potential” (MLIP) and “model” interchangeably
in what follows. Figure 1 schematically illustrates the typical proce-
dure of a single time step in an atomistic machine learningmolecular
dynamics (ML-MD) simulation. After the atomic coordinates are
read in and the neighbor list is computed to determine the local
environments around each atom, the coordinates are transformed
into an intermediate representation. It is this representation that is
then passed to the machine learning model—be it one based on neu-
ral networks (NNs),10 Gaussian process regression (GPR),11 or one
of several other closely related methods. The accuracy and the trans-
ferability of the regression model are usually greatly improved by
the use of representations that fulfill the requirements of symmetry
and locality,10,12–14 while at the same time being sensitive to all rele-
vant structural changes,12,15,16 being smooth functions of the atomic
coordinates, and—ideally—being free of degeneracies, which map
completely different structures to the same descriptor.17

Here, we focus on a class of representations that fulfill these
requirements and that can be constructed starting from a descrip-
tion of a structure in terms of an atom density—which is naturally
invariant to permutations of the atom labels—which is made transla-
tionally and rotationally invariant by first summing overR3 and then
averaging ν-point correlations of the resultant atom-centered den-
sity over theO(3) improper rotation group.14 The smooth overlap of
atomic position (SOAP) power spectrum is perhaps the best-known
member of this class of representations,12 but a wealth of other
descriptors such as those underlying the spectral neighbor analy-
sis potentials (SNAPs),18 the atomic cluster expansion (ACE),19,20
moment tensor potentials (MTPs),21 and the equivariant extension
λ-SOAP22 and the N-point contractions of equivariant (NICE)23

representation can be recovered as appropriate limits or extensions.
Atom-centered symmetry functions8,10 can also be seen as a projec-
tion of these atom-density representations on a bespoke set of basis
functions.

Even though these representations are related through a com-
mon mathematical formalism,14,19 the cost of evaluating them, and
the accuracy of the resulting models, can vary greatly. In some cases,
different frameworks have been shown to yield comparable errors,24
while other studies have suggested a trade-off between accuracy
and computational cost, with the combination of SOAP features
and Gaussian process regression (hereafter termed just SOAP-GAP)
emerging as the most accurate, but also the most computationally
demanding method.25,26

In fact, the evaluation of SOAP features and their gradients can
take anywhere from 10% to 90% (depending on the system and the
parameters chosen) of the total computational cost of the energy
and force evaluation in a typical molecular dynamics (MD) simu-
lation with the SOAP-GAP method; almost all the remaining cost
is taken up by the evaluation of the kernels (and their gradients)
required to compute the GAP energy and forces. We therefore dis-
cuss optimization strategies aimed at reducing the computational
cost of these two critical components. While we focus, at present,
on a serial implementation, the modular structure that we introduce
to optimize single-core performance is also very well-suited to par-
allelization, which becomes indispensable when aiming at extending
simulation size and timescale.

We begin in Sec. II with an overview of density-based represen-
tations and present our benchmarking methodology in Sec. III. We
continue in Sec. IV showing how the mathematical formulation of
density-based representations reveals several opportunities for opti-
mization, which we implement and systematically benchmark. We
then expand these benchmarks to a variety of realistic simulation
scenarios, shown in Sec. V, comparing against an existing simula-
tion code and investigating the effect of convergence parameters.We
present further experimental extensions of the code’s capabilities in
Sec. VI. Finally, in Sec. VII, we summarize the improvements and

FIG. 1. A scheme showing the different components involved in the evaluation of energies and forces for an atomic-scale machine-learning model: Neighbor list (NL),
representation calculation, and model evaluation. These steps need to be performed for each new structure in a screening procedure or each step in a molecular-dynamics
simulation.
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describe the role of our new, modular, efficient code librascal in
the modern atomistic ML ecosystem.

II. THEORY
We begin by giving a brief overview of the construction of a

symmetrized atom-density representation,14 introducing the nota-
tion we use in the rest of this paper to indicate the various compo-
nents that are needed to evaluate the features associated with a given
structure. The construction operates by a sequence of integrals over
symmetry operations, applied to a smooth (or Dirac-δ-like) atom
density that is taken to describe the structure. After summing over
translations, one obtains a description of the atomic environment Ai
around the central atom i, which depends on the neighbor positions
rji = rj − ri. Each atomic species a is associated with a separate den-
sity built as a superimposition of Gaussian functions centered on the
interatomic distance vectors, �x|rji; g� ≡ g(x − rji) with variance σ2,
restricted to a local spherical cutoff rcut by a smooth function fcut,

�ax�A; ρi� =�
j∈Ai

δaaj�x�rji; g� fcut(rij). (1)

We use a notation that mimics the Dirac bra-ket formalism,27 in
which the ket indicates the entity being represented (the density field
ρ centered on atom i of structure A or the Gaussian density that
describes the position of neighbors) and the bra indicates the indices
that label different features (in this case, the chemical species a and
the position at which the field is evaluated, x, that serves as a contin-
uous index). To simplify the notation, when discussing the construc-
tion of the features for an arbitrary configuration, we omit the refer-
ence to the atomic structure such that �ax�A; ρi� → �ax�ρi�. Follow-
ing Ref. 14, we introduce the symmetrized (ν + 1)-body correlation
representation,

�a1x1; . . . aνxν�ρ⊗νi � = �
k=0,1�SO3

dR̂ �a1x1�R̂îk�ρi� . . . �aνxν�R̂îk�ρi�, (2)

where ρ⊗νi is a tensor product of ν atom centered fields averaged over
all possible improper rotations. This object can be understood as a
fixed ν-point stencil centered on atom i, which is applied continu-
ously to the density field, hence accumulating correlations of body
order ν + 1. To perform the rotational average, it is convenient to
expand the atom density on a basis whose expansion coefficients are
given by

�anlm�ρi� =�
j∈Ai

δaaj� dx �nl�x��lm�x̂��x�rji; g�
=�

j∈Ai

δaaj�nlm�rji; g�, (3)

where x = ∥x∥, x̂ = x�x. �x�nl� ≡ Rnl(x) are orthogonal radial basis
functions, which may or may not depend explicitly on l (see, e.g.,
Ref. 28), and �x̂�lm� ≡ Ym

l (x̂) are spherical harmonics. As we discuss
in Sec. IV A, the choice of �x�nl� is flexible and can thus be guided
by considerations of computational and information efficiency. The
angular dependence, on the other hand, is most naturally expanded
using spherical harmonics, which results in compact expressions for
the density correlation features of Eq. (2) in terms of products and
contractions of the expansion coefficients of Eq. (3) (see Ref. 14 for

more details). For the case of ν = 2,

�a1n1; a2n2; l�ρ⊗2i � = 1√
2l + 1

�
m
(−1)m�a1n1lm�ρi�

× �a2n2l(−m)�ρi�, (4)

which corresponds to the SOAP power spectrum of Ref. 12 up to
some inconsequential factors. In the following text, we discuss and
benchmark the efficient implementation of the density expansion
and the spherical invariant of order 2, i.e., the power spectrum, in
librascal.

III. METHODS
In order to provide a concrete assessment of the impact of the

optimizations we describe in this paper and to demonstrate the per-
formance of the optimized code on a variety of realistic systems, we
apply a comprehensive benchmarking strategy that compares differ-
ent classes of systems and breaks down the overall computational
cost into contributions associated with different steps of the eval-
uation of the ML model. We focus on a typical use case of SOAP
features, namely, as the input to a kernel ridge regression (KRR)
model for a property and its derivatives (e.g., energy and forces).29
Even though librascal is mainly dedicated to the calculation of
features, including the model evaluation step is crucial to assess the
computational effort in the context of the overall cost of the model.
In the same spirit of focusing on themost common, and relevant, use
case scenario, we consider the cost of evaluating a previously trained
model, rather than the cost to train the model itself. The training
step must be performed only once per potential, and—at least in the
case of KRR/GPR models—is usually limited by the need to store
large kernel or feature matrices in memory, rather than by compu-
tation time. When running a simulation, such as an MD trajectory,
the representation and model evaluation constitute the real limiting
factors in what can be achieved with a given potential in terms of
statistics, system size, and complexity of the target properties.

A. Benchmarks and key parameters
We report and examine the benchmarks separating the logi-

cal components of the overall calculation, as summarized in Figs. 1
and 2—namely, the construction of the neighbor list, the calcula-
tion of the local density expansion (that can be further broken down
into the evaluation of radial and angular terms), the combination
of the density coefficients to obtain an invariant representation, and
the evaluation of the model itself. Most of these steps can also be
broken down into the time required to compute just the represen-
tation (energy) vs the overhead for computing gradients (forces) in
addition.

For the representation stage, it is possible to track the com-
putational cost as a function of a few key parameters, namely, the
radial and angular expansion limits (nmax and lmax, respectively). The
benchmarks for this stage are reported not per atom but per pair,
consistent with the overall scaling of this component of the calcu-
lation. The timings reported in this way are therefore also mostly
independent of the system in question, i.e., the variation between
systems is usually comparable to the variation between individual
timing runs. The model stage has a less straightforward dependence
on the spherical expansion parameters, and the system dependence

J. Chem. Phys. 154, 114109 (2021); doi: 10.1063/5.0044689 154, 114109-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Schematic showing the process
of expanding the density in a radial and
angular basis set and recombining those
to form spherical invariants (or covari-
ants).

is more subtle. The main influence on the computational cost is the
feature space dimension nfeat and the number of environments nactive
used to parameterize the model. As will be discussed in Sec. IV H,
both of these parameters can be reduced significantly by the use of
dimensionality reduction algorithms, with lower computational cost
generally trading off with the accuracy of predictions (a pattern seen
in many other machine learning frameworks25). In order to run and
organize the large number of individual benchmarks required for
this study, we have made an extensive use of the signac data man-
agement framework,30,31 which can be accessed from an open repos-
itory.32 The version of librascal used to run these benchmarks is
archived to Zenodo.33

B. Datasets
The system dependence of the overall computation is influ-

enced by two major factors: The first is the number density, which—
together with the cutoff radius rcut—determines the total number
of pairs that must be iterated over to compute the representations,
as well as the number of the degrees of freedom needed to fully
characterize the local environment, which, in turn, affects the radial
and angular expansion parameters necessary to represent it. The
second is the number of chemical elements that is present, which
directly affects the dimensionality of the representation. However,
several optimizations are possible depending on the model and
species composition, as well as the distribution of these species
throughout the system, making this a subtle and nontrivial influence
on the total model cost.

Therefore, we have decided to benchmark the overall cost
(neighbor list, representation, and model together) on a selection
of five realistic datasets that represent both typical and challeng-
ing applications of machine learning potentials. For a single-species
system, we have chosen the bulk silicon dataset34 from the work of
Bartók et al.;35 despite its simple species composition, it still repre-
sents a large array of structural diversity. The fluidmethane dataset36
from the work of Veit et al.37 has two chemical species but is

distributed homogeneously throughout the cell; the dataset addi-
tionally contains a range of different cell densities. In order to
include more challenging multi-species systems, we have selected
three additional datasets from different application areas. The sol-
vation dataset from the work of Rossi et al.38 consists of structures
each containing a single molecule of methanesulfonic acid within a
large cell of liquid phenol, where the presence ofmultiple species and
the inhomogeneity of their distribution presents a challenge for both
representation and fitting algorithms. The molecular crystal dataset
“CSD1000r” used byMusil et al.39 contains up to four species, where
not all species are present in each separate structure. Finally, the
widely used QM9 dataset40 contains isolated molecules of up to nine
heavy (non-hydrogen) atoms each and is composed of up to five
chemical species—where, again, not every species is represented in
every structure.

IV. IMPLEMENTATION OF INVARIANT
REPRESENTATIONS

We begin by discussing the librascal implementation of
the power spectrum SOAP features and by showing how a deeper
understanding of the structure of the atom-density correlation fea-
tures can be exploited to improve substantially the cost of evaluation.
Benchmarks on all the datasets discussed above are included in the
supplementary material—here, we choose a subset of the different
test cases since, usually, the computational cost can be normalized in
a way that minimizes the dependence on the specifics of the system
at hand.

A. Density coefficients
The exact expression for the density coefficients depends on the

specifics of the atom density field and on the basis used to expand
it. To see this, it is advantageous to separate the integral in Eq. (3)
into radial and angular coordinates. Then, regardless of the choice of
the functional form of the atom density or the radial basis, the den-
sity coefficients can be written as a sum over functions of neighbor
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distances and orientations,

�anlm�ρi� =�
j∈Ai

δaaj fcut(rji)�nlm�rji; g�, (5)

where �nlm�rji; g� =� dx �nl�x��lm�x̂��x�rji; g�. (6)

For a Gaussian atom density, the integral can be factorized into

�nlm�r; g� = �lm�r̂��nl�r; g�, (7)

containing a radial integral

�nl�r; g� = 4πe−cr2� ∞
0

dx x2�nl�x�e−cx2 il(2cxr), (8)

where c = 1/2σ2, and the radial and angular degrees of freedom are
explicitly coupled by the l dependence of the modified Bessel func-
tion. Thus, the density coefficients can be computed by evaluating
spherical harmonics and radial integral functions for each pair of
neighbors, and then, by summing over their products,

�anlm�ρi� =�
j∈Ai

δaaj fcut(rji)�lm�r̂ji��nl�rij; g�. (9)

Alternative atom-centered density formulations such as in ACE19

or TurboSOAP28 lead to similar expressions for the radial function.
For instance, TurboSOAP chooses a Gaussian atomic density that
is symmetric about ri instead of rji, making it possible to factorize
the radial term such that �nl�rij; ĝ� = �n�rij; ĝ��l�rij; ĝ�. Both terms
can be efficiently computed using recurrence relations in l and n. In
librascal, the density expansion is implemented only for Gaus-
sian atomic densities symmetric about rji, using two types of radial
basis sets: The Gaussian-type orbital (GTO) basis and the discrete
variable representation (DVR) basis.

B. GTO radial basis
The Gaussian-type orbital radial basis is defined as

�x�n; GTO� = Nnxn exp[−dnx2], (10)

where dn = 1�2σ2n , σn = rcut max(√n, 1)�nmax, N
2
n = 2�(σ2n+3n Γ(n + 3�2)) is a normalization factor, and 0 ≤ n < nmax. In

contrast to the displaced Gaussian basis in the original formulation
of SOAP,12 this choice of radial basis leads to a radial integral that
can be evaluated analytically,

�nl; GTO�r; g� = π3�2 exp[−cr2]Nn
Γ� n+l+32 �
Γ�l + 3

2� c
lrl(c + dn)− n+l+3

2

× 1F1�n + l + 3
2

, l +
3
2
,
c2r2

c + dn
�, (11)

where 1F1 is the confluent hypergeometric function of the first kind.
Given that the overlap matrix S between GTOs of the form (10) can
be computed analytically, it is then easy to obtain an orthogonal basis
set,

�x�n; o-GTO� =�
n′
[S−1�2]nn′�x�n′; GTO�. (12)

Due to the linear nature of all the operations involved in the eval-
uation of the density expansion coefficients, the orthogonalization

can be applied at any point of the procedure. In the case of the
analytical evaluation of Eq. (11), it is convenient to first combine
the contributions from all the neighbors to the density coefficients
Eq. (8) and then orthogonalize just once. In Sec. IV D, when com-
puting the coefficients numerically, it is instead more convenient to
orthogonalize the radial integral Eq. (11) directly.

The total time required to compute the radial integral, as well as
its derivative with respect to rij (needed for gradients of the model),
is plotted in the top left panel of Fig. 3 as a function of the expansion
parameters nmax and lmax and scales roughly linearly with respect to
the expansion thresholds (see also the supplementary material for a
more detailed figure). Despite the use of an efficient and robust algo-
rithm, which is discussed in Appendix A, most of the computational
cost in the evaluation of Eq. (11) is associated with the confluent
hypergeometric function 1F1.

C. DVR radial basis
Another possible choice of the basis is inspired by the idea of

using a numerical, rather than analytical, evaluation of the radial
integral. In fact, the numerical integral can be done exactly and with
no discretization overhead if we choose the orthonormal DVR radial
basis with a Gauss–Legendre quadrature rule.41 This basis has the
advantage of vanishing at every quadrature point except for one, i.e.,

FIG. 3. Computational cost for the evaluation of the radial integral and its deriva-
tives with different methods for structures taken from the QM9 dataset. Note that
the dataset has very little influence on this benchmark since the radial integral
and its derivative are always evaluated once per neighbor. For the splining, an
accuracy of 10−8 was chosen.
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�x�n; DVR� = √ωnδ(x − xn), which simplifies the numerical radial
integral into

�nl; DVR�r; g� = xn√ωne−cx2n il(2cxnr), (13)

where xn are the quadrature points, distributed across the range [0,
rcut + 3σ] over which the integrand differs substantially from 0, and
the ωn are the corresponding quadrature weights.42 The DVR basis
is orthogonal by construction and only requires evaluating the mod-
ified spherical Bessel function rather than the more demanding 1F1,
leading to a reduction of about a factor of 2 of the cost of evaluat-
ing radial integrals (top right panel in Fig. 3). The computational
cost of evaluating the radial integral in the DVR basis is again shown
in the upper right-hand panel of Fig. 3. The computational cost is
reduced by more than half compared to the integral in the GTO
basis, although the scaling with the lmax and especially nmax param-
eters remains approximately linear (see plots in the supplementary
material).

D. Spline optimization
Rather than devising basis functions that allow for a less

demanding analytical evaluation of the radial integrals, one can eval-
uate inexpensively the full radial integral �nl�r; g� by pre-computing
its value on a grid and then using a cubic spline interpolator. For
each combination of radial 0 ≤ n < nmax and angular 0 ≤ l ≤ lmax
indices, the integral is tabulated and the spline is computed for the
range [0, rc]. A grid {rk}Mk=1 with constant step size � is used to
achieve a constant time complexity for the search of the closest inter-
val [rk, rk+1] for a distance rij ∈ [rk, rk+1]. Following the implemen-
tation of Ref. 43, the computation of radial terms simplifies to the
evaluation of a polynomial of degree of 3 in rij with precomputed
coefficients ck and dk,

�nl�r; g� = 1
�
�(r − rk+1)ck + (r − rk+1)3dk − (r − rk+1)dk

+ (r − rk+1)ck+1 + (r − rk+1)3dk+1 − (r − rk+1)dk+1�. (14)
This expression requires only a small number of multiplications
and additions, thus reducing the computational time of the radial
integral by avoiding the evaluation of the complex hypergeomet-
ric, exponential, or Gamma functions present in the analytical GTO
and DVR basis sets. Given that the expression is linear in the coeffi-
cients, it is straightforward to evaluate the coefficients for |o-GTO�
by simply applying the orthogonalization matrix to the coefficients
of |GTO�. Smooth derivatives @�nl�r; g��@r of this piecewise polyno-
mial function can also be computed by taking the derivative of the
polynomial withminimal additional effort. As seen in Fig. 3, splining
reduces the computational cost of the radial integrals by almost an
order of magnitude and effectively eliminates the difference between
the GTO and DVR bases.

Thus, the choice of �x|nl� should not be guided by the cost of
evaluation but by a different metric—for instance, the information
efficiency. As discussed in Ref. 44, even though in the nmax → ∞
limit all bases converge to the same feature space, they do so with
different rates. Figure 4 shows that the GTO basis converges to the
complete basis limit faster than either the DVR basis or the shifted-
Gaussian basis used in the QUIP code (see Sec. V A).12 This can
be seen both in terms of the error in approximating the nmax →∞ scalar-product SOAP kernel and in terms of the global feature

FIG. 4. Analysis of the convergence of the SOAP features built using the GTO
and DVR basis set of librascal and the shifted-Gaussian basis of QUIP, with
respect to reference features computed using the non-splined librascal GTO
radial basis and nmax = 20. The top panel shows global feature reconstruction error
(GFRE), and the bottom panel shows the distance between kernel matrices, both
computed on the bulk silicon dataset. All features are computed using lmax = 16.
Dashed curves correspond to the spline approximation of the GTO and DVR bases
using an accuracy of 10−6 and are identical to the analytical version except for the
highest nmax, where a small residual GFRE remains, indicating an approximation
error that can be reduced by using a finer grid in the spline.

space reconstruction error (GFRE),44 a measure of the ability of a
set of features to linearly predict a second set of features—in this
case, the nmax = 20 GTO power spectrum. For the same value of
nmax, the GTO basis better approximates the complete basis set limit,
which offsets the higher computational cost. When using splines,
the computational overhead associated with GTOs is eliminated and
this basis has a clear advantage overall. It is important to stress that
this reduction in computational cost comes with essentially no neg-
ative side-effects: the splines approximate their target very closely
(spline-based curves in Fig. 4 are indistinguishable from their analyt-
ical counterparts except for large nmax), and the approximation does
not affect the exact translational, permutational, or rotational sym-
metries of the features. Finally, there is evidence that the size of the
radial basis set nmax has a larger influence than the angular expan-
sion threshold lmax on the accuracy of a SOAP-based potential.45
Furthermore, a reduction in nmax does not only lower the cost of
the spherical expansion coefficients but also of evaluating invariants.
Together, these insights all point toward numerical optimization of
the radial basis as a promising future line of investigation.

E. Spherical harmonics
In contrast to the relatively obscure special functions needed for

the radial integrals, the spherical harmonics needed for the angular
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part of the density coefficients [see Eq. (7)] are much more widely
used due to their importance in any problem with spherical sym-
metry. Correspondingly, there has been much research into find-
ing efficient algorithms to evaluate spherical harmonics, leading to
many good algorithms becoming publicly available. In librascal,
we have chosen to implement the algorithm described by Limpanu-
parb and Milthorpe,46 which makes use of efficient recurrence rela-
tions optimized for speed and numerical stability and is similar
to the algorithm implemented in the GNU Scientific Library.47
Gradients are computed from analytical expressions given in the
supplementary material.

As shown in Fig. 5, the cost scales linearly with the angu-
lar expansion parameter lmax and including gradients consistently
increases the cost by a factor of about 4, consistent with the need
to compute three additional values per spherical harmonic. The cost
to compute the spherical harmonics and gradients is typically com-
parable to, or larger than, the cost to compute the splined radial
integral; this cost is discussed in more detail and in the context of
the whole invariant computation in Sec. IV F.

F. Spherical expansion and invariants
Having discussed how to implement an efficient procedure to

evaluate the radial and the angular terms contributing to the den-
sity expansion, let us now consider the cost of the remaining steps
to obtain the full SOAP feature vector �a1n1; a2n2; l�ρ⊗2i �. Figure 6
presents an overview of the timings for all evaluation steps for dif-
ferent (nmax, lmax), comparing a dataset of bulk Si configurations and
a database of molecular crystals. For a few selected parameter sets, it
also shows the breakdown of the evaluation time into the part associ-
ated with the evaluation of radial integrals and spherical harmonics
for each neighbor, the combination of the two into the full density
expansion coefficients, and the calculation of the SOAP invariants.
The spline interpolation makes the cost of radial integrals negligi-
ble, and even the evaluation of spherical harmonics usually requires
less than 25% of the total timing. For the silicon dataset, which has
only one atomic species, the cost is typically dominated by the com-
bination of radial and angular terms. Indeed, the computational cost
of this step scales roughly as nneighnmax(lmax + 1)2, which can easily
dominate the total cost for realistic parameter sets.

For the molecular materials, on the other hand, the evalua-
tion of the invariants becomes more expensive, comparable to the

FIG. 5. Timings for the computation of the spherical harmonics as a function of the
angular expansion threshold for the QM9 dataset.

computation of the density coefficients. The difference can be
explained as follows. Given that the coefficients �anlm|ρi� are com-
bined to obtain spherically equivariant representations of the atomic
environment by averaging over the group symmetries their tensor
products, as outlined in Eq. (2), their evaluation exhibits a very
different scaling. The cost is independent of the number of neigh-
bors and instead depends strongly on the size of the basis used to
expand the atom density and on the number of chemical species
nspecies. For the special case of spherical invariants of body order
(ν + 1) = 3, corresponding to classic SOAP features,12 evaluating
Eq. (4) essentially amounts to computing an outer product over
the (a, n) dimension of expansion coefficients that is then summed
over m—which requires a number of multiplications of the order of
nspecies2nmax

2(lmax + 1)2. In summary, the cost of the different steps
varies substantially depending on the system, the cutoff, and the
expansion parameters, and there is no contribution that dominates
consistently in all use cases.

G. Cost of gradients
Evaluating the gradients of the invariant features with respect to

the atomic coordinates is a necessary step to compute model deriva-
tives, e.g., forces and stresses for MD simulations—but it also entails
a substantial overhead, as shown in the right-hand panels of Fig. 6.
This overhead is ultimately a consequence of the direct evaluation of
the gradients of the features, which requires a separate contraction
for each of the �nn′l| components in the SOAP vector,

@�nn′l�ρ⊗2i �
@rj

∝�
m
�n′lm�ρi�� @�nlm�rji; g�

@rj
+�. (15)

While some speedup could be attained by reordering the summa-
tion, the core issue is the need to compute a separate term for each
feature and each neighbor of the central atom, which means that
the computational effort, for the typical values of (nmax, lmax), is
overwhelmingly dominated by the construction of the invariants.
These issues indicate that the evaluation of gradients would ben-
efit from further optimizations—in particular, trading-off modu-
larity for speed by optimizing the expansion coefficients together
with the model evaluation. This way, it will be possible to avoid the
(re)computation of certain intermediate quantities, analogous to the
optimization of the order of matrix multiplications involved in the
evaluation of the chain rule, linking the model target and the input
atomic coordinates.

H. Feature dimensionality reduction
A more straightforward, and potentially more impactful, opti-

mization involves performing a data-driven selection to reduce the
number of invariant features to be computed and used as inputs
of the model. Even though representations based on systematic
orthonormal basis expansions, such as the SOAP power spectrum,
provide a complete linear basis to describe three-body correla-
tions20,48 and even though they do not provide an injective repre-
sentation of an atomic environment,17 one often finds that for real-
istic structural datasets, different entries in the SOAP feature vector
exhibit a high degree of correlation. This means that they span a
much larger space than what is effectively needed for the prediction
of typical atomistic properties.
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FIG. 6. Effect of radial and angular cutoffs on the overall timing of calculating spherical invariants. (left) Molecular crystal dataset (with, on average, 27 neighbors per center
and four elements). (right) Bulk silicon dataset (16 neighbors per center and a single element). (top) SOAP power spectrum only. (bottom) SOAP power spectrum and
gradients. All calculations use the GTO radial basis with a spline optimization. For selected points, we also show, as pie charts, the relative time spent in the different phases.

Therefore, a subset of features—usually a small fraction of the
full set—can be selected with little impact on the model error.15,49

Both CUR50 and farthest point sampling (FPS)49,51,52 selection strate-
gies are available in librascal and can be performed as a pre-
liminary step in the optimization of a model, using Python utility
functions. Feature selection can reduce the time spent both on com-
puting the features and themodel parameters and onmaking predic-
tions (see Sec. V B). For kernel models and reasonably simple forms
of the kernel function, the evaluation of both the features and the
kernels scale linearly with nfeat.

Once a list of selected features has been obtained, their indices
{q} ≡ {(aqnq; a′qn′q; lq)} can be passed to the C++ code. The sparse

feature computation is simply implemented as a selective evalua-
tion of the pre-selected invariants �q�ρ⊗2i �. The effect of this opti-
mization on the overall cost of computing spherical invariants is
shown in Fig. 7, with realistic nmax and lmax parameters, which are
comparable to those used in applications (i.e., (nmax, lmax) equal
to (10, 12) for Si,35 (8, 6) for methane,37 and (9, 9) for molecu-
lar crystals39). The overall trend is that of a constant contribution
(from the local density expansion) plus a linear term (from the
construction of spherical invariants). Although most datasets do
not reach linear scaling even for the largest number of features,
selecting a small nfeat can reduce the computational cost by up to an
order of magnitude. The impact of feature dimensionality on both
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FIG. 7. Timing for the calculation of the SOAP power spectrum with gradients
as a function of the requested number of features. Horizontal lines represent the
time taken by the local density expansion step for each dataset. The gray line
is a guide for the eye representing a linear relation between time and the num-
ber of features. The (nmax, lmax) parameters used are the following: bulk silicon
(10,11), liquid methane (8,7), solvated CH3SO3H (8,7), QM9 (12,9), and molecular
crystals (10,9).

the computational cost and accuracy of models trained on realistic
data is discussed in Sec. V C; oftentimes, the features can be sparsi-
fied fairly aggressively (up to a factor of about 5–10, depending on
the dataset) without any significant impact on the prediction error.

V. COMPARATIVE BENCHMARKS
Now that we have analyzed separately the different components

of the calculation of the SOAP features, we turn our attention to the
end-to-end benchmarking of a full energy and force evaluation, sim-
ilar to what one would encounter when running a MD simulation.
As in Sec. IV, we run comprehensive tests on each of the five datasets
described in Sec. III B and we report here those that are most telling
of the scaling of the different terms with the system parameters, most
notably the neighbor density and the number of chemical elements.
We include a simple but complete implementation of kernel ridge
regression, a framework that is often used together with SOAP fea-
tures and that allows us to comment on the interplay between the
calculation of the representation and the model. Thus, we can com-
pare the computational effort associated with the use of librascal
with that of QUIP, an existing, well-established code to train and
evaluate Gaussian approximation potentials (GAPs) based on SOAP
features,53 and investigate the effect of the various optimizations
described above on the overall model efficiency.

A. Existing implementations
Over the past couple of years, several codes have been

released that can be used to fit and run ML potentials support-
ing different representations, especially for neural-network-type
potentials such as n2p254 (which uses Behler–Parrinello ACSF10),
ANI-1,55 PANNA,56 or DeepMD.57 Here, we focus on kernel meth-
ods, for which there is a smaller number of actively used codes.
The first, and still widely adopted, is the QUIP library, part of the
libAtoms framework,58 which has been used for almost all published
Gaussian approximation potentials (GAPs)9,28,37,59–62 and contin-
ues to be actively maintained. SOAP features are also implemented

in several other packages, including DScribe,63 TENSOAP,64 and
TurboSOAP28 (now integrated into QUIP). Other notable kernel-
learning potential packages are GDML, which implements the
“gradient-domain machine learning” method of Chmiela et al.65
(the full-kernel equivalent of the sparse kernel model we imple-
ment here), and QML,66 which implements the FHCL-type
representations67 and the OQML framework.68 We finally note for
completeness several codes used for linear high-body-order models,
such as the SNAP method18 implemented in LAMMPS,69 aPIPs70
and ACE19,20 implemented in JuLIP,71 and the NICE descriptors23
implemented in a separate code72 interfaced with librascal (see
Sec. VI). Here, we focus only on the QUIP code, which is the
most mature implementation available andmatches most closely the
application domain of librascal.

B. Kernel models
To benchmark the performances of librascal in the context

of the GAP framework typically used to build potentials with SOAP,
we have implemented the same regression scheme used in QUIP
to build a MLIP based on the SOAP power spectrum representa-
tion. We summarize the key ideas, emphasizing the aspects that are
important to achieve optimal performance. In a GAP, as in the vast
majority of regression models based on atom-centered features, the
energy is defined as a sum of atomic contributions,

E(A) ≡ �E�A� =�
i∈A E(Ai) ≡�

i∈A�E�Ai�, (16)

where Ai indicates a local environment centered on atom i. An
accurate, yet simple and efficient GAP can be built using a “pro-
jected process approximation”73 form of kernel ridge regression,
which mitigates the unfavorable scaling with train set size ntrain of
the cost of fitting (cubic) and predicting (linear) energies using a
“full” ridge regression model. A small, representative subset M of
the atomic environments usually found in the training set—the so-
called “active,” “pseudo-,” or “sparse” points—is used, together with
a positive-definite kernel function k, as a basis to expand the atomic
energy,

�E�Ai� = �
I∈M δaiaI �E; aI �MI�k(MI ,Ai), (17)

where MI indicates the Ith sparse point, �E; aI �MI� indicates the
regression weights, and a separate energy model is determined for
each atomic specie, which also means that the active set is par-
titioned with respect to the central atom-type. The sparse model
(17) exhibits a much more favorable scaling with training set size,
both during fitting [O(ntrainnactive2+nactive3), for the implementation
in librascal] and when predicting a new structure [O(nactive)].
Obviously, the accuracy of the approximation relies on a degree of
redundancy being present in the training set, and in practice, a suit-
able size of the active set M scales with the “diversity” of the struc-
tures contained within. Usually, however, an accuracy close to that
of a full model can be reached even with nactive � ntrain. The gradi-
ent of the energy with respect to the coordinates of an atom j can be
obtained as a special case of the general form (B1),

∇j�E�A� = �
I∈M�E; aI �MI��

i∈A δaiaI∇jk(MI ,Ai), (18)
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and the virial (the derivative with respect to deformations η of the
periodic cell) can be obtained as a special case of (B2),

@

@η �E�A� = �I∈M�E; aI �MI��
i∈A δaiaI �j∈Ai

rji ⊗∇jk(MI ,Ai). (19)

In both Eqs. (18) and (19), the sum over the neighbors of atom i
extends also over periodic replicas of the system. Both equations
require the evaluation of kernel gradients, which can, in turn, be
expressed using the chain rule in terms of the derivatives of the ker-
nel function with respect to atomic features, and the atomic gradient
of such features,

∇jk(MI ,Ai) =�
q
∇j�q�Ai�@k(MI ,Ai)

@�q�Ai� . (20)

When computing the model derivatives, it is important to contract
the sums in the optimal order, by first summing the derivatives of
the kernel over the active set. For instance, for the force,

∇j�E�A� =�
i∈A δaiaI�q ∇j�q�Ai���

I∈M�E; aI �MI�@k(MI ,Ai)
@�q�Ai� �. (21)

This form shows that the cost of evaluating forces scales with
nfeatnneighnactive, indicating how the reduction in the number of
sparse points and features combines to accelerate the evaluation of
energy and forces using a sparse GAP model.

The fitting procedure that is implemented in librascal has
been discussed in Ref. 74, and we do not repeat it here. It only
requires the evaluation of kernels and kernel derivatives between
the active set environments and the environments in the structures
that are part of the training set and is usually limited by memory
more than by computational expense. In the following benchmarks

we adopt the polynomial kernel, which has been widely used to
introduce non-linearity into SOAP-based GAP models,9,37,59–61

kζ(MI ,Ai) =
�������q �MI �q��q�Ai�

������
ζ

, (22)

whose derivative can be simply computed as

@kζ(MI ,Ai)
@�q�Ai� = ζ�MI �q�kζ−1(MI ,Ai). (23)

C. Benchmarks of sparse models
Having summarized the practical implementation of a sparse

GPR model based on SOAP features, we can systematically inves-
tigate the effect of the sparsification parameters—the number of
sparse environments nactive and the number of sparse features nfeat—
on the different components of an energy and force calculation.
Figures 8 and 9 show the full cost of evaluating a MLIP for dif-
ferent classes of materials, both with and without the evaluation of
forces, for different levels of sparsification in terms of both nactive and
nfeat. The cost is broken down in the contributions from the evalu-
ation of the neighbor list, the representation, and model evaluation
(prediction) steps.

Figure 8 shows that, when using the full feature vector in the
model,75 the evaluation of the kernels contributes substantially to
the cost of predicting energies. In QUIP, this cost, which scales lin-
early with the number of active points, matches the cost of evaluating
the representations, independent of nactive, since the same number of
representations must always be computed for the target structure, at
nactive ≈ 2000 for Si and nactive ≈ 200 for the molecular crystals. Due
to the optimization of the feature evaluation step in librascal, the

FIG. 8. Prediction timings for GAP mod-
els as a function of the number of sparse
points, with (right) and without (left) the
evaluation of forces, with minimal feature
sparsification, i.e., just enough to elimi-
nate redundant symmetric terms (these
are retained in librascal for simpler
bookkeeping). We used all unique SOAP
features for each system here, meaning
6660 features for the molecular crystals
and 715 features for bulk silicon.
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FIG. 9. Prediction timings for GAP mod-
els as a function of the number of fea-
tures, with (right) and without (left) the
evaluation of forces. All models use
2000 sparse points for the sparse ker-
nel basis. The rightmost column in each
plot shows the cost with some redundant
features, which are computed by default
in librascal for simpler bookkeep-
ing. In practical applications, though,
we recommend these be eliminated
automatically through feature sparsifi-
cation. The column directly to the left
of the QUIP benchmark corresponds to
a lossless librascal calculation and
can be used as a comparison of the
performance without including feature
selection. Figure 10 demonstrates the
trade-off between accuracy and cost for
aggressive feature selection.

kernel evaluation dominates down to even smaller nactive. Note also
the lower cost of the kernel evaluation for the molecular crystals in
librascal, which can be explained by the fact that only the features
associated with chemical species that are present in each structure
are computed, while in QUIP, they yield blocks of zeros that are
multiplied to compute scalar products. We observe, however, that
QUIP achieves better performance for the evaluation of the kernel
(and kernel derivatives) for a single-element dataset, possibly due
to a better vectorization of the memory-bound operations, which is
allowed by the contiguous storage of the features. Evaluating also
forces (right-hand panels of Fig. 8) introduces a very large overhead
to feature calculation (up to one order of magnitude, as discussed in
Sec. IVG) and roughly doubles the cost of the other steps involved in
obtaining model predictions. Since the cost of feature evaluation is
independent of nactive, the active set can be expanded up to thousands
of environments before the model evaluation becomes comparable
to feature evaluation.

In order to accelerate calculations further, it is then necessary to
reduce not only the time needed to compute the model but also the

time needed to compute the representation itself. In Fig. 7, we show
how restricting the evaluation of SOAP features to a smaller subset
of the �a1n1; a2n2; l| indices reduces by up to an order of magnitude
the cost of evaluating the feature vector and its gradients. Figure 9
demonstrates how this speedup combines with the acceleration of
the model evaluation step, whose nominal complexity also scales lin-
early with nfeat, for an intermediate size of the active set nactive = 2000.
For simple, single-component systems such as bulk silicon, the cost
saturates to that of evaluating the density expansion coefficients, and
so, the overall speedup that can be achieved by feature sparsifica-
tion is limited to about a factor of 2 with respect to the full SOAP
power spectrum. For multi-component systems, such as the molec-
ular crystals dataset or the solvated CH3SO3H dataset, a speedup of
nearly an order of magnitude is possible.

D. Accuracy-cost tradeoff
While the performance optimization discussed in Sec. IV can

dramatically increase the efficiency of a MLIP based on SOAP
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features and sparse GPR, one should obviously ensure that models
with reduced nactive and nfeat still achieve the desired accuracy. The
data-driven determination of the most representative and diverse set
of features and samples is a very active area of research, using both
unsupervised15,29,49–51 and, very recently, semi-supervised76 criteria
to select an optimal subset. Here, we use the well-established FPS to
sort features and environments in decreasing order of importance,
starting from the full list of environments for the Si dataset and a
pool of 715 features, corresponding to nmax = 10, lmax = 12. We train
MLIPs to reproduce energy and forces and report the fourfold cross-
validation error as well as the cost for evaluating the energy and its
gradients in Fig. 10, using only the “best” nactive active points and nfeat
features. We also report the “�” measure introduced in Ref. 77 as an
indication of the ability of the ML model to reproduce properties
that are indirectly related to the accuracy of the PES,35,78

� =
����∫ 1.06V0

0.95V0
[EGAP(V) − EDFT(V)]2dV

0.12 V0
, (24)

where EGAP and EDFT are the GAP and DFT energies relative to the
diamond energy minimum and V0 is the volume of the minimum
DFT energy structure for each phase.

The results clearly indicate that it is possible to considerably
reduce the cost of the MLIP with little impact on the accuracy of
the model. Severe degradation of model performance occurs in the
regime in which the computational cost is dominated by the calcu-
lation of the density expansion coefficients, suggesting that further
optimization of the evaluation of �anlm|ρi� might bring only small
performance gains in most practical use cases.

VI. EXPERIMENTAL FEATURES
The spherical expansion coefficients can also be used to com-

pute equivariant features and kernels,22,79 as well as higher-body-
order invariants.14,19 This evaluation is easily and efficiently achieved
with an external library, as it is done in the current implementa-
tion72 of the N-body iterative contraction of equivariant (NICE)
framework.23 Furthermore, librascal contains experimental

FIG. 10. Assessment of the performance of a GAP model for bulk silicon. The cost of evaluating energy and forces as a function of nfeat and nactive is shown in the top-left
panel. The other panels benchmark the accuracy of the model: clockwise, they show the root mean square error for the predicted energies and forces, the �-error—see
Eq. (24)—for the energy/volume curve for the β-Sn and diamond phases of Si, and the error on the equilibrium volume of the diamond phase. All errors are computed relative
to the reference density functional theory (DFT) values.35 One can assess the trade-off between model accuracy and computational cost by comparing corresponding cells
in each plot. For instance, (nfeat = 286, nactive = 5000), highlighted with a blue border, has comparable accuracy to the full model, while requiring only a third of the evaluation
time.
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implementations of other representations based on the SOAP frame-
work, for example, the bispectrum12,18 and the ν = 2 equivariants
that underlie the λ-SOAP kernels22 (which is also available as an
independent implementation64). As development progresses, these
libraries will be further integrated with librascal, harmonizing
and streamlining the user-facing APIs and achieving the best balance
between modularity and evaluation efficiency.

VII. CONCLUSIONS
In this paper, we have made practical use of recent insights into

the relationships between several families of representations that are
typically applied to the construction of machine-learning models
of the atomic-scale properties of molecules and materials. We have
demonstrated how these insights can be translated into algorithms
for more efficient computation of not only these representations,
most notably SOAP, but also the atom-density bispectrum and the
λ-SOAP equivariants. We have shown how the radial basis used
to expand the density can be chosen at will and computed quickly
using a spline approximation. Together with a fast gradient evalua-
tion, this reduces the cost of computing the density expansion to the
point where it is no longer the rate limiting step of the calculation in
typical settings. Further optimizations can be obtained by a “lossy”
strategy, which trades off some accuracy for efficiency by discard-
ing redundant or highly correlated entries both in the active set of
a projected-process regression model and in the invariant features.
We have implemented all these optimizations in librascal, a mod-
ular, user-friendly, and efficient open-source library purpose-built
for the computation of atom-density features (especially SOAP).

In order to test these optimizations in practice, we have run
benchmarks over different kinds of datasets spanning elemental
materials and organic molecules in isolation, in crystalline phases,
and in bulk liquid phases. Using one of the most widespread codes
for the training and evaluation of SOAP-based machine-learning
interatomic potentials as a reference, we have found that our imple-
mentation of the SOAP representation is much faster, but that the
advantage is less dramatic when considering also the calculation
of a kernel model, which scales with the number of features, and
that of the gradients, which is dominated by a term that scales with
the number of neighbors in both codes. Feature selection addresses
these additional overheads and allows for an acceleration of the end-
to-end evaluation time of energy and forces by a factor anywhere
between 4 and 10 with a minimal increase in the prediction errors.
Our tests show that in the current implementation, when using real-
istic values of the parameters, the different steps of the calculation
contribute similarly to the total cost, indicating that there is no sin-
gle obvious bottleneck. Further improvements, although possible,
should consider the model as a whole and especially improve the
accuracy/cost balance of lossy model compression techniques.

SUPPLEMENTARY MATERIAL

See the supplementary material for figures describing the
benchmark results for all the datasets mentioned in this work.
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APPENDIX A: EFFICIENT IMPLEMENTATION OF 1F 1

The confluent hypergeometric function of the first kind is
defined as

1F1(a, b, z) = ∞�
s=0
(a)s(b)ss! zs, (A1)

where (a)s is the Pochhammer symbol [Ref. 80, Chap. 5.2(iii)].
To efficiently compute Eq. (11), we implement a restricted version
of 1F1,

G(a, b, rij) = Γ(a)
Γ(b) exp[−cr2ij]1F1

�
�a, b,

c2r2ij
c + dn

�
�, (A2)

where a = n+l+3
2 and b = l + 3

2 . We take into account that the argu-
ments of 1F1 are real and positive, and we avoid its artificial overflow
by using the asymptotic expansion [Eqs. (13.2.4) and (13.7.1) in
Ref. 80],

lim
z→∞1F1(a, b, z) = ezza−b Γ(b)Γ(a)

∞�
s=0
(b − a)s(1 − a)s

s!
z−s (A3)

since the exponential in Eq. (11) can be factorized as exp[ c2r2ijc+dn
]

exp[−cr2ij] = exp[cr2ij( c
c+dn
− 1)] and c

c+dn
− 1 < 0. Note that G

is implemented as a class so that the switching point between the
direct series and the asymptotic expansion evaluations is determined
at construction for particular values of a and b using the bisection
method.

For each value of n, the function G and its derivatives with
respect to rij can be efficiently evaluated using the two step recur-
rence downward relation,

G(a + 1, b + 1, rij) = c2r2ij
c + dn

G(a + 2, b + 3, rij)
+ (b + 1)G(a + 1, b + 2, rij), (A4)

G(a, b, rij) = c2r2ij
c + dn

a − b
a

G(a + 1, b + 2, rij)
+
b
a
G(a + 1, b + 1, rij), (A5)

with @G(a, b, rij)�@rij = 2c2rij
c+dn

G(a + 1, b + 1, rij) − 2crijG(a, b, rij). We
found empirically that only the downward recurrence relation was
numerically stable for our range of parameters. Note that a + 1 cor-
responds effectively to steps of l + 2, so computing G and dG

drij
for all

l ∈ [0, lmax] and all n ∈ [0, nmax] requires 4nmax evaluations when
using this recurrence relation.
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APPENDIX B: DERIVATIVES OF THE ENERGY
FUNCTION

We have defined an atom centered energy model such that the
energy associated with structure A can be written as in Eq. (16),
E(A) = ∑i∈AE(Ai). The structure A is determined by the set of
atomic coordinates and species {ri, ai} and (for periodic structures)
unit cell vectors {h1, h2, h3}. The atom-centered environment Ai is
entirely characterized by the atom centered vectors {rji = rj − ri}, with
rji < rcut. The derivatives of E with respect to the position of atom k
(the negative of the force acting on the atom) can be computed using
the chain rule,

@E(A)
@rk

=�
i∈A

@E(Ai)
@rk

=�
i∈A�j∈Ai

@E(Ai)
@rji

⋅ @rji
@rk

. (B1)

Here, index j runs over the neighbors of atom i, which includes peri-
odic images, if the system is periodic. The term @rji/@rk is 0 unless
k = i (in which case, it evaluates to −1) or if j = k (in which case, it
evaluates to 1). In the periodic case, the derivative with respect to rk
has to be interpreted as one in which all periodic images of atom k
are displaced simultaneously. Thus, when the neighbor j is a peri-
odic image of k, @rji/@rk = 1, and if k = i, the total contribution of the
periodic images of i is 0.

For the virial, we need to compute the derivative of the energy
with respect to infinitesimal strain deformations of the unit cell η.
Using the atom-centered decomposition and applying the chain rule
as mentioned above, one gets

@E(A)
@η =�

i∈A
@E(Ai)
@η =�

i∈A�j∈Ai

@E(Ai)
@rji

@rji
@η

=�
i∈A�j∈Ai

@E(Ai)
@rji

⊗ rji, (B2)

where again j runs over all the neighbors including periodic images.
It is interesting to note that the periodic images of i have a non-zero
contribution to the virial.
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