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Abstract

Data analyses based on linear methods constitute the simplest, most robust, and transparent
approaches to the automatic processing of large amounts of data for building supervised or
unsupervised machine learning models. Principal covariates regression (PCovR) is an
underappreciated method that interpolates between principal component analysis and linear
regression and can be used conveniently to reveal structure-property relations in terms of
simple-to-interpret, low-dimensional maps. Here we provide a pedagogic overview of these data
analysis schemes, including the use of the kernel trick to introduce an element of non-linearity
while maintaining most of the convenience and the simplicity of linear approaches. We then
introduce a kernelized version of PCovR and a sparsified extension, and demonstrate the
performance of this approach in revealing and predicting structure-property relations in chemistry
and materials science, showing a variety of examples including elemental carbon, porous silicate
frameworks, organic molecules, amino acid conformers, and molecular materials.

1. Introduction

Over the past decade, there has been a tremendous increase in the use of data-driven and machine learning
(ML) methods in materials science, ranging from the prediction of materials properties [1—4], to the
construction of interatomic potentials [5-8] and searches for new candidate materials for a particular
application [9-12]. Broadly speaking, these methods can be divided into two categories: those that are
focused on predicting the properties of new materials (supervised learning), and those that are focused on
finding or recognising patterns, particularly in atomic structures (unsupervised learning). While supervised
methods are useful for predicting properties of materials with diverse atomic configurations, they are not as
well-suited for classifying structural diversity. Conversely, unsupervised methods are useful for finding
structural patterns, but often fail to directly predict materials properties. Moreover, it can be difficult to
validate motifs identified by an unsupervised learning algorithm, as the results obtained from the clustering
algorithm depend on the choice of the structural representation and can therefore be biased by preconceived
expectations on what the most relevant features should be [13].

Methods that combine the predictive power of supervised ML and the pattern recognition capabilities of
unsupervised ML stand to be very useful in materials informatics, making it possible to increase data
efficiency and more clearly reveal structure-property relations. A number of statistical methods have been
developed for augmenting regression models to incorporate information about the structure of the input
data, including principal component regression [14], partial least squares regression [15], cluster-wise
regression [16], continuum regression [17], and principal covariates regression (PCovR) [18-21]. Among
these, PCovR is particularly appealing, because it transparently combines linear regression (LR; a supervised
learning method) with principal component analysis (PCA; an unsupervised learning method). The method
has found previous applications in climate science [22], macroeconomics [23], social science [20], and
bio-informatics [24, 25], but has yet to be widely adopted. A handful of extensions have been developed for
PCovR, including a combination with cluster-wise regression [26] and regularised models [22, 24].
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Figure 1. A schematic representation of the different linear operations that can be performed to model structure-property
relations in terms of a matrix of features X or an associated kernel matrix K that represents the input samples.
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In this paper, we propose a kernel-based variation on the original PCovR method, which we call Kernel
Principal Covariates Regression (KPCovR), with the aim of making it even more versatile for statistics and
machine learning applications. We begin by summarising the required background concepts and constituent
methods used in the construction of linear PCovR in addition to the kernel trick, which can be used to
incorporate an element of non-linearity in otherwise linear methods. We then introduce KPCovR, both for
full and sparse kernels, and demonstrate their application to several different classes of materials and
chemical systems.

2. Background methods

We start by giving a concise but complete overview of established linear methods for dimensionality
reduction and regression, as well as their kernelized counterparts. This is done to set a common notation and
serve as a pedagogic introduction to the problem, complemented by a set of interactive Jupyter notebooks
[27]. Expert readers can skip this section and proceed to section 3, where we introduce kernelized PCovR
methods. Throughout this section, we demonstrate the methods on the CSD-1000r dataset [28], which
contains the NMR chemical shielding of nuclei in a collection of 1 000 organic crystals comprising C, H, N,
and O and their 129 580 atomic environments, of which we use 25 600 in this study. To simplify this into a
more illustrative example, we classify and predict simultaneously the chemical shieldings of all nuclei, even
though in actual applications one usually would deal separately with each element. As the input features, we
use the SOAP power spectrum vectors containing 2 520 features, which discretise a three-body correlation
function including information on each atom, its relationships with neighbouring atoms, and the
relationships between sets of neighbours [29, 30].

2.1. Notation
In the following, we assume that the input data has been processed in such a way that the nature of each
sample (e.g. the composition and structure of a molecule) is encoded as a row of a feature matrix X. Each
sample is therefore a vector X; of length #1getures, S0 that X has the shape #1mples X features- Similarly, the
properties associated with each sample are stored in a property matrix Y, which has the shape
Msamples X Mproperties- We denote the data in latent space (i.e. a low-dimensional approximation of X) as T. We
denote each projection matrix from one space to another as P4, where A is the original space and B is the
projected space. As such, the projection matrix from the input space to T is Pxr, and Py is the projection
matrix from T to the input space. Note that in general projectors P4p are not assumed to be orthogonal nor
full-rank. A graphical summary of the mappings that we consider in this paper is depicted in figure 1.

To simplify notation and to work with unit-less quantities, we assume in our derivations that both X and
Y are centred according to their respective column means and are scaled such that the square of their
Frobenius norms are equal to 7g,mples and that the variance of each individual property in Y is equal to
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1/Nproperties- A similar centring and scaling procedure is also applied when working with kernels [31].
Centring and scaling is discussed in more detail in appendix A, and demonstrated in the companion Jupyter
notebooks [27]. To make notation less cumbersome, variables names are not defined uniquely across the
entirety of the paper. We re-use variable names for common elements among the different subsections—for
example, using T to represent a low-dimensional latent space in all methods—but the precise definitions of
the re-used variables may differ between subsections and should not be confused with one another.

We also use throughout a few additional conventions: (1) we write an approximation or truncation of a
given matrix A as A; (2) we use A to signify an augmented version of A; that is, A is defined differently from
A, but occupies the same conceptual niche (3) we represent the eigendecomposition of a symmetric matrix as
A = U, A,UI, where A, is a diagonal matrix containing the eigenvalues and Uy the matrix having the
corresponding eigenvectors as columns; (4) we use throughout the Frobenius norm ||A|| = 1/Tr (ATA); and
(5) we define and report the values of the different losses normalised by the number of sample points, but we
omit such normalisation in derivations to declutter equations.

2.2. Linear methods
We begin by discussing models of the form:

B=AP; (1)

where B is a target quantity (e.g. a property that one wants to predict or an alternative, lower-dimensional
representation of the feature matrix A), and P43 is a linear projection that maps the features to the target
quantity [32, 33].

2.2.1. Principal component analysis

In principal component analysis [34, 35], the aim is to reduce the dimensionality of the feature matrix X by
determining the orthogonal projection T = XPxy which incurs minimal information loss. More formally, we
wish to minimise the error ¢ of reconstructing X from the low-dimensional projection:

Eproj = ||X - TPTXHz/nsamples- (2)

The requirement that Pxr is orthonormal implies that Prx = P%... Using the properties of the Frobenius
norm, ¢ can be rewritten as

£ =Tr (X (I-PxrPy;)X") (3)
which is minimised when the similarity
p=Tr(PLX"XPxr) (4)

is maximised. Given the orthogonality constraint on Pxr, the similarity is maximised when Pxr corresponds
to the eigenvectors of the covariance C = X'X that are associated with the f1jien; largest eigenvalues. We
introduce the eigendecomposition C = UCACUE, where Ug is the matrix of the eigenvectors and A¢ the
diagonal matrix of the eigenvalues, so that

T = XU, (5)

where we use the notation U to indicate the matrix containing only the top #jyen; components. The outcomes
of a PCA with #1j5¢ene = 2 of the CSD-1000r dataset are shown in figure 2(a). The atomic environments are
split clearly according to the nature of the atom sitting at the centre of the environment, reflecting the
prominence of this information in the SOAP features we use.

2.2.2. Multidimensional scaling

A reduction in the dimensionality of the feature space can also be achieved with a different logic that
underlies several methods grouped under the label of multidimensional scaling (MDS) [36]. In MDS, the
latent space is chosen to preserve the pairwise distances of the original feature space, corresponding to the
loss

(= Z(|Xi—xj|2—|ti—tj|2)2, (6)

Msamples i<j

where X; and t; refer to the full and projected feature vector of the i sample. In general, equation (6) can be
applied to all sorts of measures of feature dissimilarity, and requires an iterative optimisation. When the
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Figure 2. Projection and Regression Models of CSD-1000r. In each projection, the property values are denoted by marker colour
and the marker symbol denotes the central atom of each environment, which corresponds to the cluster in the projection. In each
regression, the target is denoted by a dotted line. colours denote absolute error of predicted properties, and inset includes the
values of £proj = || X — TP1x||? / Nsamples» Lregr = ||Y — TP1y|* /Hgamples> and root-mean-square error (RMSE), where appropriate.
Projections: (a) Principal Components Analysis (PCA) and Multidimensional Scaling (MDS), (c) Kernel PCA, and (e) Sparse
Kernel PCA, with 1, = 50. Regressions: (b) Ridge Regression, (d) Kernel Ridge Regression (KRR), and (f) Sparse KRR, with
Hactive = 50. It is important to note that the regressions performed in (b), (d), and (f) are computed on the full input space, and
greatly outperform regressions performed on the corresponding latent-space projections in (a), (c), and (e).
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Figure 3. Principal Covariates Regression of CSD-1000r. Combining ridge regression (far left) and PCA (far right) with mixing
parameter cv, PCovR can minimise the total 10ss £ = £yroj + lregr = || X — TP1x||? /fsamples + [|[Y — TPy ||? /gamples» as denoted in
white in the figure. The upper panels show the resulting projections and regressions at the indicated « value, aligned with the
horizontal axis in the lower plot. Colour mappings correspond to those in figure 2 and figure 5.

distance between features is the Euclidean distance, the link between the metric and the scalar product
suggests using the alternative loss

Zgra\m = HK - TTT||2/nsamples~ (7)

Minimizing this loss (a procedure that is referred to as ‘classical MDS’) is not equivalent to minimising
equation (6), as the two losses concur only if one can find a solution that zeroes ¢. If the eigenvalue
decomposition of the Gram matrix reads K = XX” = Ug AxU{, £ is minimised when TT7 is given by the
singular value decomposition of K, that is by taking

T=UcAY’ (8)

restricted to the largest #j,ent eigenvectors. However, C and K have the same (non-zero) eigenvalues, and the

(normalised) eigenvectors are linked by Ux = XUcA 12, Hence, one sees that T = XUg, consistent with
equation (5). Thus, classical MDS yields the same result as PCA in figure 2(a).

2.2.3. Linear regression
In linear regression, one aims to determine a set of weights Pxy to minimise the error between the true
properties Y and the properties predicted via Y = XPyy, which is equivalent to minimising the loss

gregr = ||Y - XPXY”z/nsamples (9)

In the following, we consider the case of an £? regularised regression with regularisation parameter ), i.e.
ridge regression [32]. The loss to be minimised is

£ = [|Y = XPxy||* + A|[Pxy|*. (10)

Minimising the loss with respect to Pyy yields the solution Pxy = (XX + AI) ~'XTY. If one chooses to
perform the regression using the low-dimensional latent space T = XPxr and approximate Y with TPy, then
Pry = (TTT+ ) T7Y.

The ridge regression of the CSD-1000r dataset is shown in figure 2(b). Given the small train set size, and
the difficulty of fitting simultaneously different elements with shieldings across a large range (=800 ppm),
the model achieves a very good accuracy, with an RMSE below 23 ppm.
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2.3. Principal covariates regression

Principal covariates regression (PCovR) [18] utilises a combination between a PCA-like and an LR-like loss,
and therefore attempts to find a low-dimensional projection of the feature vectors that simultaneously
minimises information loss and error in predicting the target properties using only the latent space vectors T.
A mixing parameter @ determines the relative weight given to the PCA and LR tasks,

1_
X — XPxrPrx|® + (1-a)

samples samples
n 1 1

K:

|Y — XPxrPry||*. (11)

The derivation we report here, albeit in our notation, follows closely that in the original article [18]. PCovR
can be implemented in a way that diagonalises a modified Gram matrix (sample-space PCovR) or in a way
that requires computing and diagonalising a modified covariance (feature-space PCovR). The two
approaches yield the same latent-space projections, and which one should be used depends on the relative
magnitudes of #gmples and Mgeatures-

2.3.1. Sample-space PCovR
It is easier to minimise equation (11) by looking for a projection T in an auxiliary latent space for which we
enforce orthonormality, T'T = I, known as a whitened projection.

This allows us to write P5,, = TTX and P7, = TTY. By definition T= XP,3, thus we can express the
loss as

(= a|X—TT"X|]> + (1 - a)||Y — TTTY|. (12)
This loss is minimised by maximising the associated similarity

p="Tr (aTTTXXT +(1- a)’i‘TTWT) (13)

=Tr (@TT"XX" + (1 — o) TT"XPxyP5,X"), (14)

where we have substituted Y with the regression approximation Y = XPyy, given that a linear approximation
of Y in the latent space can only, at best, reproduce the part of the properties that can be represented in the
full feature space. If we define the modified Gram matrix

K = aXX" + (1 — a)XPxyPL X", (15)

we can further write the similarity as

p=Tr (TTKT) . (16)

The latent space projections T that maximise the similarity correspond to the principal eigenvectors of
the matrix K, T = Ug. By analogy with multidimensional scaling—and to ensure that in the limit of o — 1

we obtain the same latent space as in classical MDS—one can obtain de-whitened projections
1 . —1)2 . . .
T= U A~/ = KUz A¢ / , reminiscent of equation (8). The projector from feature space to the latent space

is then given by

1/2

Pyr = (aX” + (1 — a)PxyPLX") UgAg (17)

The projector matrix from the latent space to the properties Y can be computed from the LR solution

Pry= (TTT+ A1) T7Y = Ag"?

A—0

UTY. (18)

2.3.2. Feature-space PCovR

Rather than determining the optimal PCovR projections by diagonalising the equivalent of a Gram matrix,
one can tackle the problem in a way that more closely resembles PCA by instead diagonalising a modified
covariance matrix. Given that I = T'T = P}T;TXTXPXT = P)T(TCPXT, we see that C!/ ZPXT is orthogonal. We can
thus rewrite the similarity function from equation (16) as

p=Tr (PLC2CC Py ), (19)

introducing
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C=C'/>’X"KxCc~'/?
—aC+ (1—a)CV/2XTYYTXC™!/2 (20)
=UeA¢UL.
The similarity is maximised when the orthogonal matrix C/ *P,; matches the principal eigenvalues of G ie.
P,; = C~'/2U¢. In general P3Pz, = C_l/zﬁéﬂgCl/z is not a symmetric matrix, and so it is not possible to

define an orthonormal Pyt such that Pry = P)T(T. Consistently with the case of sample-space PCovR, we
obtain

Pxr :C_l/zﬁéAlé/z
Pry =Ag ULC!? (21)
Pry ZAEI/ZIAJngl/ZXTY,

which minimise the PCovR loss in equation (11). These projections reduce to PCA as o — 1 and—if the
dimension of the latent space is at least as large as the number of target properties in Y—reduce to LR as
a— 0.

Figure 3 demonstrates the behaviour of PCovR when applied to the analysis of the CSD-1000r dataset.
Here we plot £,4; and £icg as a function of .. The thumbnails above the losses correspond to the projections
T = XPyr and regressions Y = TPy for the indicated o below.

For ao =0, we recover the accuracy of pure LR in predicting the values of the chemical shielding, but
obtain a latent space that misses completely the structure of the dataset. The first principal component
reflects the LR weight vector Pyy, and the second carries no meaningful information. For o = 1, we recover
the PCA projection, which separates clearly the environments based on the nature of the central atom. A
linear model built in the two-dimensional latent space, however, performs very poorly, because there is no
linear correlation between the position in latent space and the shielding values. Intermediate values of « yield
a projection that achieves the best of both worlds. The regression error is close to that of pure LR, but the
error in the reconstruction of the input data from the latent space is now only marginally increased
compared to pure PCA.

The PCovR map that corresponds to this ‘optimal’ value of cv achieves £,,,; = 0.585 (comparable to the
PCA value 0f 0.460) and /¢, = 0.112 (comparable to the LR value of 0.111). Considering the poor
performance of PCA in regression ({regr = 0.928) and LR in projection (£proj = 0.963), it is clear that the
latent-space description of the dataset achieves a more versatile representation of structure-property
relations. There is still a recognisable clustering of the environments according to central atom species, but
the O cluster, that exhibits the largest variance in the values of the shielding, is spread out diagonally to
achieve maximal correlation between the position in latent space and value of the target properties. We
propose that an optimal value of « can be obtained looking for the minimum in £poj + £reqr > but depending
on the specifics of the problem at hand, one can also give more emphasis to either of the terms or choose an
entirely different criterion to select the most suitable a.

2.4. Kernel methods
While linear methods have the beauty of simplicity, they rely on the knowledge of a sufficient number of
informative features that reflect the relation between inputs and properties. Kernel methods introduce a
possibly non-linear relation between samples in the form of a positive-definite kernel function k(X,X’) (e.g.
the Gaussian kernel exp(—||X — X’||?), or the linear kernel X - X’), and use it to define a higher-dimensional
space in which data points serve effectively as an adaptive basis [37]. Unless otherwise specified, here we use a
radial basis function (RBF) kernel, exp(—~||X — X’||?), with the hyperparameter v optimized for each data
set, as shown in the SI. Doing so can help uncover non-linear relationships between the samples, resulting
ultimately in a more effective determination of a low-dimensional latent space and increased regression
performance.

Mercer’s theorem [38] guarantees that, given a positive-definite kernel, there is a linear operator ¢(X)
that maps input features into a (possibly infinite-dimensional) reproducing kernel Hilbert space
(RKHS) [37] whose scalar product generates the kernel, i.e. ¢(X) - p(X') = k(X,X’). ¢(X) is not necessarily
known explicitly, but as we will see it can be approximated effectively for a given dataset, and we will use the
notation @ to indicate the feature matrix that contains the (approximate) values of the kernel features for all
of the sample points. We indicate with K = 37 the Nsamples X Msamples Matrix that contains as entries the
values of the kernel function between every pair of samples. In the case of a linear kernel, this is simply the
Gram matrix computed for the input features, while for a non-linear kernel its entries can be computed by
evaluating the kernel between pairs of samples, Kj; = k(X;, X;). Analogously to what we did for linear
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methods, we centre and normalise all the kernels we use in this work. Some subtleties connected to the
centring operation are discussed in appendix A.

2.4.1. Kernel principal component analysis
Kernel principal component analysis [31] proceeds parallel to classical MDS, to which it corresponds exactly

when a linear kernel is used. To construct a KPCA decomposition, one computes the eigendecomposition of
. .. .. s~ 1/2
the kernel matrix K = Ug Ax UL and defines the pl‘O]eCthIlS/ as the principal components T = UKAK/ ! The
o o —1/2 . .
projections can also be computed as T = KPxy = KUgAg * , and this second expression can be used to
project new data (in place of K we use the matrix containing the values of the kernel matrix between new and

reference points) in the approximate RKHS defined by the original samples. One can also approximate the

kernel using the projector Prx = Ay "T7K. As shown in figure 2(c), for this dataset there is little qualitative
difference between what we obtained with plain PCA and the KPCA projection. This is because SOAP
features exhibit very clear correlations with the nature of the central environments, which is already well
represented with a linear model. While it is possible to compute the 10ss £proj = ||X — TP x|/ figamples
associated with the approximation of X based on T, KPCA aims to approximate the kernel, and it is more
appropriate to judge the method ’s performance based on a Gram 1oss £gram = || K — TTT||? /sampies» Which
reduces to equation (7) for linear kernels. Alternatively, one can compute a projection loss based on the
approximation of the RHKS features, {yro; = ||® — TP1¢ ||* / fisamples as detailed in appendix B.

2.4.2. Kernel ridge regression
Kernel ridge regression [39, 40] is analogous to ridge regression, except that the kernel feature space vectors
P are substituted for the original input data X, giving the loss

(=Y = ®Pay|” + Al[Pay]’, (22)
so that the optimal weights are

Py = (7@ 4+ \I) ' ®'Y

_ (23)
— 3" (@0 + A1) Y.

Predicted properties Y can then be evaluated with Y = ®Pgy. One can avoid computing explicitly the RKHS

features by redefining the weights as Pxy = ('IHI’T + )\I) ! Y=(K+ )\I)_1 Y so that Poy = ® Pyy [41]. We
can then write the predicted properties as

Y = ®&7Pyy = KPgy. (24)
As shown in figure 2(d), the greater flexibility afforded by a kernel model reduces the error by over 70%.

2.5. Sparse kernel methods

Since the size of kernel matrices grows in n* with respect to the number of samples, one wants to avoid
computing (and inverting) the whole kernel matrix for large datasets. Instead, we can formulate a low-rank
approximation to the kernel matrix through the Nystrom approximation [42], using a sub-selection of the
data points, the active set, to define an approximate RKHS. These representative points can be selected in a
variety of ways; two straightforward methods that have been used successfully in atomistic modelling are
farthest point sampling (FPS) [43] and a CUR matrix decomposition [44—46].

Using the subscript N to represent the full set of training data and M to indicate the active set, one can
explicitly construct the approximate feature matrix as ®ny = KNMUKMMAIZ\}H\{I 2, where Uy and Ay are
from the eigendecomposition of K. All sparse kernel methods can be derived in terms of a linear method
based on the RKHS, although it is often possible to avoid explicitly computing ®nys. For instance, the
approximate kernel matrix takes the form [42],

For the following methods, we consider the approximate feature matrix ®y, to be centred and scaled as
discussed in appendix A.

11f one retains all the Nsamples €igenvectors, T corresponds to an exact approximation of the kernel features for the given dataset, as TT! =
K=o



10P Publishing

Mach. Learn.: Sci. Technol. 1 (2020) 045021

B A Helfrecht et al

a=0.0 a=0.0001 a=0.001 «a=0.01 a=0.1 a=0.5 a=0.9 a=0.99 a=0.999 a=0.9999 a=1.0
—IC T T
- X . ' ! ey BV % PN PN 9
Projection ' " " '
along 2 PCs g /’ , , , \ : : :
Property ,/' '/ /’ /’ /’ /’ '/' S ’ //’ /’ /
Regression 7 7 iy iy " S G ||l (|—rlon | l—rln | —ln
with 2 PCs | o
1.4 T T T T
0 legr O gy —O lproj+lregr
1.2
1.0
2 0.8
o
— 06} ® =0 =0 =0
0.4
0.2
oob—oo——00 oo 0o . . . . .
2 s g &8 S 2 2 3 g8 3 2
o . o o o H —
g 3 S S 3 8
o o
a
Figure 4. Kernel Principal Covariates Regression of CSD-1000r. Combining kernel ridge regression (far left) and KPCA (far right)
with mixing parameter cv. The combined 10ss £ = Cyroj + lregr = ||® — TP13 |2 /samples + [|[Y — TP1v]|? /Hgamples is given in the
lower panel. Similar to figure 3, the upper panels show the resulting projections and regressions at the indicated « value, aligned
with the horizontal axis in the lower plot. Colour mappings again correspond to those in figure 2 and figure 5. An animated
representation of the top panels can be found in the SI.

2.5.1. Sparse kernel principal component analysis

We can define the covariance in the kernel feature space along with its eigendecomposition,

C=®],,®yy=UcAcUL,

and subsequently compute the projections analogously to standard KPCA

—1/2¢
Kyvnm

T = & Uc = Knn Uk, A

Uc = KnyPxr,

(26)

(27)

which effectively determine the directions of maximum variance of the samples in the active RHKS.
Figure 2(e) shows that with an active set size of just 50 samples (out of more than 12 000), selected by
EPS [46], one can obtain a KPCA latent projection that matches very well the qualitative features of the full

KPCA construction.

2.5.2. Sparse kernel ridge regression

In sparse KRR we proceed as in standard KRR, but use the feature matrix from the Nystrém approximation.

The corresponding regularised LR loss in the kernel feature space is
£= Y — @xmPay|* + A Payl|?
for which the solution is

—1

= (L@ + M) ALPUE KDY

Ky

Alternatively, we can redefine the weights so that

Y = ®yyPoy = KNMUKMMA_1/2P¢>Y = KnaPxy,

Kum
from which we see that

Pry = UKMMAEA}[ACZP'?Y

= Uk A2 (D50 ®rn + AT)

Kym
—1/209T T
x AUl KDY

By writing out explicitly QI,M@ Ny in terms of Kyy, we obtain [40],

1

(28)

(29)

(30)

(31)
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Figure 5. Projections and Regression from PCovR Models. Analogous to figure 2, we show the loss incurred from the projections
and regression of the three PCovR models at o = 0.5. (a) Principal Covariates Regression (PCovR), (b) Kernel PCovR (KPCovR),
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—1
Pry = (K{Knw + AKunr) K, Y. (32)

As shown in figure 2(f), an active set size of 50 is not sufficient to achieve an accurate regression model, and
the error is larger than with a linear regression method. However, the error can be reduced systematically by
increasing the size of the active set, finding the best balance between accuracy and cost (see SI).

3. Extensions to principal covariates regression

After having summarised existing linear and kernel methods for feature approximation and property
prediction, we now introduce kernelized PCovR (KPCovR), as a way to combine the conceptual framework
of PCovR and the non-linear features afforded by a kernel method.

3.1. Full kernel PCovR
We start by constructing the augmented kernel matrix as a combination of KPCA and KRR. In particular, we
substitute ® for X and the KRR solution of Y, Y = K(K 4 AI) 'Y, for Y, so that we have

K=aK+ (1-a)YYT, (33)

where we consider the kernel matrix to be standardised in a way that is equivalent to normalising ® (see

appendix A). Just as in PCovR, the unit variance projections T are given by the top eigenvectors U of K, and

the non-whitened projections as T = Uf(Af(/

the PCovR kernel (equation (33)).

Projecting a new set of structures in the kernel PCovR space entails computing the RHKS between the
samples that were originally used to determine the KPCovR features and the new samples. Given that one
may not want to compute these explicitly, it is useful to define a projection acting directly on the kernel, such
that T = KPKT:

= KUKAf( e , corresponding to the RKHS & associated with

sz(a1+(1—oz)(K+/\I)*1 ) Ughg' . (34)

We also determine the matrix that enables predictions of properties from the latent space T through LR, just
as in the linear case (equation (18)). Computing the projection loss minimised by KPCovR,

Cproj = ||® — TP1a ||/ samples» 1s trivial if one computes explicitly a RKHS approximation of ®, but it
requires some work if one wants to avoid evaluating ® (see appendix B).

As shown in figure 4, the method combines a behaviour similar to linear PCovR with the improved
property prediction accuracy afforded by kernel methods. In the low-« regime the regression accuracy
approaches that of KRR, and the projection accuracy converges to a KPCA-like behaviour for a = 1. For the
optimal value of a, the latent-space map (shown in figure 5(b)) combines a clear separation of
structurally-distinct clusters with a 70% reduction in regression error when compared to linear PCovR
(Lregr = 0.026 vs. Lreqr = 0.112).

3.2. Sparse kernel PCovR
Our derivation of the sparse version of KPCovR can be obtained almost directly from that of feature-space

PCovR by taking explicitly the projection of the kernel on the active RKHS @y = KNMUKMMAE;A{, *. One
can then define the covariance of the active kernel features

= AE;CZUIZW KiKnarUi Ag (36)

and use it in the definition of the modified KPCovR covariance

= —1A—1/2
C=aC+ (1-a)C?(C+AI) ' A PUL K, Y -
X Y KnnUg, Ag/ (CH+ ML)~ €2,
With these definitions, the projection matrices onto the (sparse) KPCovR latent space and onto the

latent-space-restricted properties, analogous to equation (21), read

~1/2
Pir =Ui Ag, € /P UAG (38)
Pry =Ag OLCT2ALPUT KD, Y.
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Table 1. Performance of PCovR and KPCovR for the different examples using £regr and £proj. The o which minimizes the total loss
£ = Lregr 4 £proj is given by . Results of optimal-alpha KPCovR are always comparable or better than those from the linear PCovR
version. Values that are improved by more than 10% are highlighted in bold.

PCovR KPCovR

Dataset Matent N Y4 a=00 a=a a=10 a a=00 a=a a=1.0 o

CSD-1000 R 2 25600 lrgr 0.1106  0.112 0.9285 0.5 0.0249 0.0262 0.9285 0.5
Looj  0.9633  0.5846  0.4586 0.9656  0.575 0.4439

C-vil 2 10874  fregr 0.0707  0.0753  0.9447 0.5 0.0133  0.0172  0.9445 0.5
Lproj  0.9572  0.4443  0.2384 0.9607  0.4515 0.2398

Deem (global) 2 4000 fregr 0.065 0.1178  0.6082 0.5 0.0599 0.1143  0.608 0.5
Loy 0.5788  0.4288  0.2443 0.5652 0.4104 0.2183

Deem (local) 2 10968  flregr 0.365 0.0841  0.7279 0.5 0.0015 0.0464 0.7163 0.5
Loy  0.7629  0.6531  0.4258 0.7652  0.6648 0.4577

QM9 2 10000  fregr 0.3298  0.3905  0.4789 0.45 0.3135 0.3891 0.4789 0.5
Lproj  0.7419 05634 0.5361 0.6281 0.3677 0.3407

QM9 12 10000  fregr 0.1212  0.1296  0.2938 0.4 0.0744  0.083 0.2938 0.55
Lpoj  0.4511  0.3493  0.3287 0.2686 0.0822 0.0459

Arginine Dipeptide 2 4217 lrge 0.0122  0.0131  0.6067 0.55 0.0034 0.0045 0.6058 0.55
Loroj  0.824 0.549 0.435 0.8109 0.5282  0.4083

Azaphenacenes 2 311 lrgr 0.4632  0.5537  0.8929 0.6 0.5181 0.5582 0.8834  0.65
lproj  0.8295  0.5113  0.3742 0.8583  0.4689 0.3124

Similar to what we observed for sparse KPCA and KRR, reducing the active space to 50 active samples
preserves the qualitative features of the latent-space map, but leads to substantial loss of performance for
regression (figure 5(c)). The error, however, is equal to that observed for sparse KRR, which indicates that it
is due to the limited active space size, and not by the dimensionality reduction.

4. Examples

Up until this point, we have talked about the definition of KPCovR in an abstract, equations-heavy manner.
Here we demonstrate its usage for a wide range of materials science datasets. These datasets have all been
already published elsewhere, and we leave to the SI a precise discussion of their structure, content and
provenance, as well as a thorough analysis of the behaviour of the different linear and kernel methods applied
to each data set. Here we limit ourselves to the most salient observations, and summarise the insights that
could be relevant to the application of (K)PCovR to other materials and molecular datasets. We also make
available data files at reference [47] that can be viewed with the interactive structure-property explorer
chemiscope [48]. We encourage the reader to use them to gain a more interactive support to follow the
discussion in this section.

For each dataset, we trained machine learning models on a randomly chosen half of the included
samples, and then evaluated these models on the remaining samples. In the following section, we report
losses, errors and figures on the validation set of points only. The total number of samples we considered are
available in table 1, together with performance metrics that show that PCovR-like methods achieve
consistently an excellent compromise between the optimisation of £,,ro; and /gy, and demonstrate that
KPCovR outperforms by a large margin its non-kernelized counterpart in terms of regression performance.

4.1. Carbon

We apply KPCovR to the C-VII carbon dataset, which contains roughly 11 000 carbon structures generated
using Ab Initio Random Structure Searching (AIRSS) at 10GPa [49, 50]. Here, a KRR model predicts the
average per-atom energy of each structure with an RMSE of 0.054 eV atom ™! (equivalent to Lregr = 0.0133)
yet can only describe 4% of the latent space variance (i.e. £,r0; = 0.96). The KPCA model retains 76% of the
latent space variance but with an RMSE of 0.46 eV atom ™" ({yeq = 0.9445). By comparison, at the optimal o
value, KPCovR sacrifices little in regression accuracy (0.062 eV atom ™", £;eo; = 0.0172) and latent space
variance retention (55%).

Additionally, KPCovR provides a more intuitive qualitative picture for understanding the dataset. In the
original KPCA projection, the principal components correlate strongly with the dimensionality of the carbon
structures, with linear nanowires in the lower right of the projection, sheets and planar structures above to
the left, and 3D structures conglomerated in the upper left. The KPCovR projection does not only show a
much clearer correlation between the position on the map and the stability of each configuration, but also
provides more compact clustering of similar structures (figure 6(a)). The nanowires (typically linear carbon
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Figure 6. KPCovR for AIRSS Carbon Structures and Energies. (a) Projections coloured by the per-atom energy. KPCovR
projection at a = 0.5. Clusters identified using chemiscope have been labelled with representative snapshots provided. The KPCA
projection is given in the upper right inset, with highlighted structures in the KPCovR projection denoted by enlarged points.
(b) Projections in (a) recoloured by the bond analysis, where yellow, blue and purple denote similarity to sp, sp?, and sp?
geometries, respectively, and grey signifying no resemblance.

bonds) are located in the upper centre, the planar structures are partitioned in smaller clusters to the upper
left, with clear sub-clusters associated with different ring patterns, and 3D crystals are distributed throughout
the lower left and centre, with a well-separated cluster for tetrahedral carbon. The structural homogeneity of
the clusters is confirmed by bond analysis—typically, the most common environments found in low energy
1D, 2D, and 3D carbon structures correspond to sp, sp?, and sp> geometry. Angles between neighbouring
bonds typically serve as a good proxy for detecting these environments, where the ideal values are 180°, 120°,
109.5°, respectively. Both KPCA and KPCovR detect clusters delineated by the number of bonds and bond
angles (figure 6(b)), with these clusters arranged right-to-left in the KPCA projection, and top-to-bottom in
the KPCovR projection. However, in the KPCovR projection, there is another gradient visible, with
structures to the left of the projection more strongly coinciding with the ideal sp, sp?, and sp®, and those to
the right being increasingly distorted”. Thus, bond analysis reveals that, in addition to the clear delineation
between structure dimensionality provided by KPCA, the inclusion of an energy regression criterion in the

2The two notable exceptions—a dark purple cluster middle centre and a grey cluster upper left—can be shown to be associated with
bond angle distributions which are multimodal, leading to incorrect classification by a criterion based on the mean bond angles.
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Figure 7. KPCovR for Zeolite Structures and Environments. Two-dimensional KPCovR projections at the optimal « for

(a) 2 000 zeolite structures and (b) 5 484 zeolite environments from the Deem SLC PCOD database. The points in the projections
are coloured by the molar energy and volume according to the 2D colour map below the projection. For clarity, energies are
centred relative to the mean energy per Si over all 10 000 structures from reference [51]. The frameworks and environments with
the highest and lowest volumes and energies are also pictured below their respective projections. Below each KPCovR projection
is an analogous KPCA to facilitate a qualitative comparison with the KPCovR projections.

KPCovR loss leads to a map that more closely coincides with the conventional understanding of stable
structures as those that have low distortion relative to the ideal carbon bonding geometries.

4.2. Zeolites

We apply KPCovR to a subset of the Deem data set of hypothetical silica zeolites [51], where the use of KPCA
to construct an atlas of the building blocks of several thousand zeolites was previously demonstrated by some
of the authors [52]. By construction all frameworks in the dataset are based on tetrahedrally coordinated
SiOy units, yet they differ considerably in terms of molar energies and volumes. A KRR model based on an
additive combination of environment Gaussian kernels, built using atom-centred SOAP features with a
cutoff of 6.0 A, achieves an excellent accuracy in predicting the lattice energy (with an error around

0.79 kJ mol ™! Si), and molar volume (with an error around 1.88 A*/Si atom), with yeg; = 0.0599 for the
zeolite frameworks. However, the first two KPCA components correlate rather weakly with these properties.
A data representation based on those components provides information on the structural diversity, but
describes only qualitatively structure-property relations. As shown in table 1 KPCovR at the optimal «
provides a much more effective description; the latent space covers 59% of the structural diversity, while
providing enough information to predict accurately lattice energy (1.31 k] mol™! Si) and molar volume
(2.50 A3/Si atom), with Lregr = 0.11. The map naturally orders structures between regular frameworks that
have intermediate densities and low lattice energy (figure 7(a, ii)), toward the bottom, to frameworks with
very large pores that have very low density and usually intermediate to high lattice energies. While no clear
clusters emerge (which is not unexpected given the origin of the dataset as a high-throughput, random
search) one can often observe that nearby structures exhibit similar structural motifs. For instance, most of
the structures on the top right side of the map are associated with large 1D channels, as shown in figure 7(a,
iii).

For a system exhibiting a combinatorial number of metastable structures, such as silica frameworks, an
analysis based on the structural building blocks is often more insightful than the analysis of the overall
structures. When using atom-centred features, or additive kernels built on them, it is natural to regard
additive properties such as volume or energy as arising from a sum of environmental contributions, and to
use these atom-centred environments as the building blocks to rationalise structure-property relations. As
discussed in appendix C, the construction of a regression model for the framework properties yields as a
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side-effect a data-driven partitioning that can be used for a (K)PCovR analysis of such building blocks. The
resulting representation (figure 7(b)) shows an excellent correlation between the position in a 2D
representation and the predicted contributions to lattice energy and molar volume (site energy RMSE:

1.33 kJ/mol Si, site volume RMSE: 2.33 A%/Si atom, 34% of structural variance). As observed in

reference [51], and consistent with what is seen in the framework analysis, the thorough search of potential
frameworks that underlies the construction of this dataset is reflected in the lack of substantial clustering of
the environments. The bulk of the latent space is uniformly covered, and one does not see an obvious
qualitative relation between properties and the local topology of the framework. Regular structures are
mapped side-by-side to disordered environments. Only at the extremes can one recognise clearer patterns. (A
few extremal structures and their location in the KPCovR projection are highlighted in figure 7(b)).
High-energy (and hence poorly stable) building blocks can be distinguished between high-density structures
that contain highly strained three-member rings, and low-density structures, associated with the surfaces of
large cavitites, and to ‘pillar-like’ motifs that are present in the most highly porous frameworks (figure 7(b,
vii)). Low-energy structures, in the lower side of the map, tend to have low and intermediate volume, and are
predominantly associated with six- and four-member rings.

These are however weak correlations, and in general there are no apparent patterns that correlate the
framework topology and the position on the map. This confirms, in a more direct manner, the
structure-property insights that were inferred by separate application of supervised and unsupervised
algorithms in reference [52]—namely that, for four-coordinated silica frameworks, the topology of the
network is a good predictor of energy and density only for extremes. For the bulk of the possible binding
motifs, a low-dimensional representation is not sufficient to capture the extreme structural diversity and to
rationalise the multitude of alternative building blocks that give rise to similar macroscopic materials
properties.

4.3.QM9

Our next case study regards the QM9 dataset, which contains over 133 000 molecules consisting of carbon,
hydrogen, nitrogen, oxygen, and fluorine [53, 54], of which we use 10 000 for this study. To demonstrate the
application of KPCovR to multi-target learning, we construct our models using all 12 properties available in
the dataset: internal energy at 0 K and 298.15 K, free energy at 298.15 K, enthalpy at 298.15 K, highest
occupied molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO gap,
heat capacity, zero point vibrational energy (ZPVE), dipole moment, isotropic polarisability, and electronic
spatial extent (ESE).

Here, there is not a large qualitative difference between the two-dimensional KPCovR projection at
intermediate o and that constructed via KPCA, with the former retaining 63% of the variance compared to
the latter’s 66%. The energetic properties, which are well-represented by these first two principal
components, are also well-correlated with the degree of unsaturation, and thus the structural diversity of the
dataset. This is summarised in figure 8(a), where the projections for & = 0.5 and a: = 1.0 are shown, coloured
by the degree of unsaturation’ and with representative molecules highlighted. Besides the left-to-right
saturated-to-unsaturated trend, the map position also correlates with the presence of O, N, F atoms, that
increase from bottom to top.

Due to the large number of properties used as targets, a low-dimensional latent space cannot achieve the
same prediction accuracy as (kernel) ridge regression, for o = 0 and by extension at intermediate values of a.
It is necessary to retain a larger number of latent space components to obtain a model capable of effective
regression, as seen in table 1, where /g goes from 0.31 with #1jyene = 2 to 0.07 with #1j3ene = 12, and seen in
figure 8(b). For a given value of «, both regression and projection errors are bound to decrease when
retaining a larger number of PCs. The optimal value of c, however, is not necessarily the same for increasing
numbers of PCs particularly in datasets where £\, and £,,,; have a magnitude that varies with #jyeen, in a
different way. In this case, however, the optimal « is nearly constant, as shown in figure 8(b). The figure also
shows a sudden drop in £, for a > 0. This discontinuity in the variance suggests that insufficient
information is contained in the 12 properties to construct an orthogonal set of 12 principal components, and
thus some properties must be highly correlated.

Models constructed with fewer principal components can provide insight into the nature of the
properties included, particularly in the cases weighted towards regression as o« — 0. In figure 8(c), we show
the regression errors of the individual properties as a function of n,een;. For each property, the decay of /g
when incorporating a new principal component indicates how strongly the new feature and the property are
correlated, and gives indirect information on the correlation between properties. For instance, we can see

3The degree of unsaturation, defined as d = C — g - % + %] + 1, where X is a halogen, estimates the number of rings and 7 bonds in
the molecule.
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Figure 8. KPCovR for the QM9 Dataset. (a) Comparison of KPCovR (v = 0.5) and KPCA (inset) projections, plotted along the
first two principal components. Several molecules have been highlighted in insets. Colour denotes the correlated properties of
internal energy (at 0 and 285 K), enthalpy, and free energy in corresponding to the colourbar in (d). (b) Total loss across « and
the number of principal components for 2 (blue), 4 (purple), and 12 (orange) principal components. Solid lines denote total loss
£, dashed £reqr and dotted £,,r;. () Per-property regression loss at o = 0 for the 12 properties included. Note that the internal
energies, enthalpy, and free energy overlap completely and are given by a single colour. (d) Projections at ov = 0.0 of the 12
properties along their most correlated principal components, where each projection is coloured by the corresponding property,
scaled in accordance with the colourbar below.

that (unsurprisingly) the internal energies, enthalpy and free energy are heavily correlated with each other, as
their associated £,.qr decreases precisely in the same way, indicative of a strong correlation with the first and
fourth principal components. Figure 8(d) shows colour-coded maps of the 12 targets, using for each of them
the two PCs that lead to the largest decrease in /.

4.4. Arginine dipeptide

We also applied KPCovR to the 4 217 arginine dipeptide conformers that are collected in the Berlin amino
acid database [56], that was also investigated using a purely unsupervised dimensionality-reduction

scheme [57]. The conformer energy was used as the target property to construct the KPCovR model. Figure 9
shows the two-component KPCovR projection of the conformers in the test set at the optimal value of

o =0.55 coloured by energy (a), radius of gyration (b), and peptide bond isomerism (c). Several individual
conformers are also highlighted, including those with the highest and lowest energy and radius of gyration.
For comparison, a KPCA projection of the same conformers is plotted in the inset in the lower right corner
of each subplot. The KPCA projection alone represents well the different structural features (peptide bond
isomerism and radius of gyration), but leads to rather poor energy regression (/g = 0.61 as opposed to
Lregr = 0.005 for KPCovR at optimal o). The KPCovR projection separates more clearly a group of
high-energy conformers, to the left, and a cluster of very stable configurations, to the upper right. The
former are characterized by having both peptide bonds in the cis configuration, and by an unfavourable
steric interaction between the terminating methyl groups. The stable conformers, on the other hand, all have
the naturally-preferred all-trans isomerism, and the backbone takes an extended §-strand structure. They
only differ by the hydrogen-bonding pattern of the side-chain, that modulates more subtly the
conformational stability.
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Figure 9. KPCovR of Arginine Dipeptides. Two-dimensional KPCovR projections at the optimal « for bare arginine dipeptides
coloured by the (a) structure energies (centred relative to the mean energy over all 4 217 structures), (b) radii of gyration (R),
and (c) peptide bond isomerism. The peptide bond isomerism is determined by the dihedral angle w of the two peptide bonds. A
particular peptide bond is classified as cis (C) if —7/2 < w < 7/2, and the bond is classified as trans (T) if -7 < w < —7/2 or
7/2 <w < 7. For each KPCovR projection, the inset contains the corresponding KPCA projection. In each KPCovR and KPCA
projection, several points are highlighted, and their corresponding atomic snapshots are shown in (a).

The inclusion of an explicit supervised learning component in KPCovR does not only lead to a
dimensionality reduction that preserves with much higher accuracy the underlying structure-property
relations, but reveals more clearly the molecular motifs that stabilize (or de-stabilize) the different
conformers. This kind of analysis is likely to provide valuable insights when investigating the stability of
secondary-structure motifs in proteins [58] or the modulation of the stability of conformational space of
oligopeptides approaching an inorganic interface [59].

4.5. Azaphenacenes

As a last example, we consider a dataset containing different crystallyne polymorphs of 28 isomers of a
pyrrole-based azaphenacene compound, for which total energy and electronic mobility have been previously
computed in reference [60]. This dataset present a series of challenges for KPCovR in particular and machine
learning techniques in general, and as such is a good test for the new method presented in this paper. First,
the dataset contains a very small number of structures (311), half of which were used for training the
different models. Second, electronic mobility is an inherently non-local property, which makes it hard to
predict it using local descriptors such as SOAP, even when the descriptors are grouped in a structure kernel as
discussed in appendix C. It provides, therefore, a demonstration of the robustness of KPCovR in presence of
target properties that are noisy, or otherwise un-learnable.

We present the results of KPCovR on the validation set for different a values in figure 10, panels (a) and
(b). On the pure regression, o = 0 side, the prediction of energies is surprisingly good given the very low
number of training points. The RMSE of 3.83 k] mol ™! (equivalent to £yeqy = 0.038) is around a quarter of the
dataset intrinsic standard deviation of 14.3 k] mol~'. The prediction of electronic mobility is much harder.
We used the logarithm of electronic mobilities instead of the raw values as the prediction target, as detailed in
the supplementary information (https://stacks.iop.org/MLST/00/0000001/045021/mmedia). Although this
transformation improved our ability to learn electronic mobilities, the regression loss is very high (RMSE of
0.9; £reqr = 0.482, which is more than 90% of the expected variance of 0.5). We are overall unable to learn
electronic mobility for this dataset, similarly to what was already observed using a pure KRR model [60, 61].

Looking now at the optimal o = 0.65 (i.e. the value of & minimising the sum of the projection and
regression losses), we observe that we are still unable to learn electronic mobility with a relative loss of 0.485
(equivalent to an error that is approximately 95% of the intrinsic variability of the data, and only marginally
worse of the error for a = 0), and the resulting prediction is visibly skewed in the parity plot. The poor
regression performance for the log-mobility is reflected in the lack of a clear correlation between the position
in latent space and this target property .

Even if we are unable to predict the electronic mobility, the cohesive energy of the different polymorphs
can be learned very effectively, and the optimal oc = 0.65 corresponds to an excellent balance between £yeg
and £},ro;. The latent-space projection separates the data set in two clusters along the vertical axis. This
separation is related to the a bimodal energy distribution, with low and high energy structures, which is lost
in the limit of pure KPCA at o = 1. In figure 10, we show an annotated map of the different crystal stackings,
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Figure 10. KPCovR of Azaphenacenes. (a) Overview of the projections produced by KPCovR for different « values coloured by
both energy and electronic mobility according to the colour map on the side; parity plots for the regression of both energy and log
of the electronic mobility over the testing set of Azaphenacenes (b) Evolution of the different losses as a function of alpha £reg is
the total regression loss and KPCovR projection loss £, (c) Annotated map of azaphenacenes as produced by KPCovR at

a = 0.65. Each point corresponds to a different molecular crystal, with the colours and coloured insets denoting the substituent
molecule. Symbols show the number of hydrogen bond per molecule, as computed with PAMM [54]. On the bottom, we show
two examples of DNA-style hydrogen bonds between molecules, the images were created using VESTA [55]. The inset in the
upper right contains the analogous KPCA projection.

coloured by molecular identity. Different symbols indicate the average number of hydrogen bonds between
molecules in the crystals, which we identified using a Probabilistic Analysis of Molecular Motifs (PAMM)
[54]. We find that the cluster of low energy stacking contains only structures with two hydrogen bonds per
molecule (the maximal possible value), while the high energy cluster contains mostly structures with one
hydrogen bond per molecule. Additionally, the majority of structures in the low energy cluster are linked by
hydrogen bonds in a DNA-like fashion, i.e. by having pairs of matching hydrogen bond donors and acceptors
facing each another. Finally, the low energy cluster only contains crystal created from molecules 5, 6, 12 and
16 (following the notation from the original paper [60]), the 24 other molecules being in the high energy
cluster. These four molecules are the only ones with just the right geometry to create matching, DNA-like
hydrogen bonding patterns with two bonds per molecules, and high symmetry crystals. Isomer 9 and 18 also
contain a similar N-C-NH motif, but cannot form a paired hydrogen bond pattern because of steric
hindrance (9) and asymmetry (18).

5. Conclusions

In this paper we provide a comprehensive overview of linear- and kernel-based methods for supervised and
unsupervised learning, showing an example of their application to elucidate and predict structure-property
relations in solid-state NMR. We also discuss a simple combination of principal component analysis and
linear regression, PCovR [18], that has as yet received far less attention than in our opinion it deserves. We
derive extensions to PCovR that make it possible to use it in the context of kernel methods (KPCovR and
sparse KPCovR), and demonstrate their application to five distinct example datasets of molecules and
materials. We also prepared a set of Jupyter notebooks [27] that provide a pedagogic introduction to both
traditional and novel methods we discuss, and allow exporting structure-property maps in a format that can
be visualised with an interactive tool that we also developed as part of this work [48].

The flexibility afforded by a kernel method allows improving substantially (typically by a factor of two)
the regression performance relative to linear PCovR. Compared to kernel PCA, KPCovR maps reflect more
explicitly structure-property relations, and—in all the diverse cases we considered—are more revealing,
helping to identify the molecular motifs that determine the behaviour of the different structures, and that
often reflect intuitive chemical concepts such as hybridisation, chemical composition, and H-bond patterns.
This study highlights the promise of combining supervised and unsupervised schemes in the analysis of data
generated by atomistic modelling, to obtain clearer insights to guide the design of molecules and materials
with improved performance, and to build more effective models to directly predict atomic-scale properties.
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Supporting information

The electronic supporting information contains a comprehensive discussions of the parameters used for the
analysis of each of the five examples, together with a comprehensive comparison of the performance of
different linear, kernel and PCovR-like methods for the five datasets. For each dataset we also provide an
interactive map that can be visualized with the online viewer chemiscope [48], archived at reference [47]. A
set of Juypyter notebooks that provide a hands-on tutorial for the application of KPCovR is available in a
separate repository [27].

Appendix A. Centring and scaling

In this paper, as it is often done in machine learning applications, we centre and scale (or standardise) the
original input data, which removes the dependency of results on a trivial shifting or scaling of the data set.
Standardisation is of particular importance in PCovR-based methods, as the model can be inherently biased
towards the projection or regression if X and Y data are of different relative magnitudes. To avoid ambiguity,
we centre and scale our raw data X’ and Y’ in the following manner,

_V Mtrain (X, j Xt/rain) (Al)
||)(t/rain - thrain ||

I/
. / Mtrain (Yi - Yi,train)
- - ! _ v/ ’
y/ Mproperties HYi,train Yi,train H

where A; denotes the i property (column) of A, A is the columnwise mean of A, and A.;, indicates the
subset of samples in A that belong to the training set. By standardising the data in this manner we ensure that
the squared Frobenius norms of Xirin and Yirin are equal to figmples; and that individual property variances
Of Yirain are all equal to 1/nproperties-

We perform a similar centring and scaling procedure when constructing kernels. Kernel standardization
can be viewed as simply centring and scaling the data in the RKHS feature space. If N indicates the dataset
that defines the centring (typically the train set) and i, j two data points between which we want to compute
the centred kernel,

(A2)

i

Ki‘: nn (d)l_(i)N)T(d)]_(i)N) (AS)

Tr (@ — @) (B~ )")

where @ is the column mean of the training set feature matrix ®y, and is computed once and for all for the
train set, together with the normalisation factor. This can be written avoiding to compute explicitly the
RKHS features:

K, +Kj,

Mtrain

+) K;) : (A4)

nn' EN ntrain

Mtrain /
KIJ TI'(KNN) (Kl] nEZN
Centring is achieved by computing column averages of the raw kernels between points 7, j and the train set
points. Note that kernel matrix elements may refer to different matrices, depending on whether i and j are
themselves train set points, or new inputs. The scaling factor #1.,in, / Tr(Kyn) is computed using the centred
train set kernel.

In sparse KPCA and sparse KPCovR, a slightly different approach is required, as the goal is to ensure that
the Nystrom approximation to the full kernel matrix is centred and scaled properly—i.e. the active set kernel
defines the RKHS, but centring and scaling should be computed based on the training set N. A centred and
scaled kernel between an input i and an active point m € M can then be computed as

Ntrain / I<]I'm
K = Kim - ’ (A5)
\/ Tr (KnvKp Kb 2
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where once more the trace included at the denominator in the normalisation factor is computed using the
centred version of K.

Appendix B. Projection loss in kernel methods and KPCovR

Rewriting equation (11) in terms of the RKHS, we get:
= a”'I) - TPT@HZ/nsamples + (1 - O‘) HY - TPTYHZ/”samples- (B6)

The latter portion of this equation, £reg, can be written in terms of the KRR loss given in equation (22),
where Pgy also encapsulates the loss incurred from the latent space projection. The former portion, £py;, is
straightforward to compute given an explicit RKHS. In case one wants to avoid evaluating the RKHS,
however, £,,;,; may be computed in terms of the kernel.

Indicating the kernel between set A and B as K5, the projection of set A as T4, and with N and V the
train and validation/test set, one obtains

gproj =Tr [KVV - 2KVNTN(TKTTN)_1T5

(B7)
+Ty(TNTyN) " TAKay Tn(TATN) ' T
When the loss is evaluated on the train set, so that N =V, this expression reduces to
Loroj = T1 (Kny — KnnPrrPrx) - (B8)

where Prx = (TLTx) "' TLKnn. A full derivation of this loss equation can be found in the SI.
Appendix C. Structures and environments

When analyzing molecular or materials structures, there are several possible scenarios, involving the
prediction of atom-centred or global properties, and the search for structural correlations between atomic
environments or overall structures. Whenever the nature of the property and that of the structural entity
match, the formalism we have reviewed in section 2 applies straightforwardly. A common scenario that
deserves a separate discussion involves the case in which one seeks to reveal how atomic environments or
molecular fragments contribute to global properties of a material. Often, this means that the properties of a
structure y(.A) are written as a sum over contributions from the atom-centred environments in each
structure, y(A) = >, , (&;). For a linear model, this means that the regression loss reads

regr = ZHY ZXiPXYHZ

Msamples A icA

> ly(A) = X (AP,

(C9)

”samples

where we defined X(.A) = Y, , Xi. In other terms, one can formulate the regression using features that
describe the structures as a sum of the features of their atoms, and then proceed to determine the weights Pxy
as in conventional linear regression. A similar expression holds for kernel methods, where the kernels
between structures can be built as sums over kernels between environments, resulting in an additive property
model. In a (K)PCovR framework, where one is restricted to learning the fraction of the properties that can
be approximated as a (kernelized) linear function of X, one should first train a model based on the full
structures, and then compute the predictions for individual environments. These are combined to form the
approximate property matrix Y. The model can then be built as in the homogeneous case of environment
features and atom-centred properties.
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